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Abstract— In this paper, we consider the problem of test design
for real-time fault detection and diagnosis in the space shuttle’s
non-toxic orbital maneuvering system and reaction control sys-
tem (NT-OMS/RCS). For demonstration purposes, we restrict our
attention to the aft section of the NT-OMS/RCS, which consists
of 160 faults (each fault being either a leakage, blockage, igniter
fault, or regulator fault) and 128 sensors. Using the proposed
tests, we are able to uniquely isolate a large number of the faults
of interest in the NT-OMS/RCS. Those that cannot be uniquely
isolated can generally be resolved into small ambiguity groups
and then uniquely isolated via manual/automated commands.
Simulation of the NT-OMS/RCS under various fault conditions
was conducted using the TRICK R© modeling software.

I. INTRODUCTION

For safety-critical systems (e.g., aerospace, nuclear, auto-
motive, etc), fast and efficient fault detection and isolation
(FDI) techniques are necessary in order to attain a high
degree of availability, reliability, and operational safety [2].
The permissible time window for the detection and diagnosis
of faults in these systems can be quite narrow, which makes the
problem of online detection and isolation all the more difficult.

The space shuttle is a prime example of a safety-critical
system. For orbital maneuvering, orbital attitude control, and
atmospheric re-entry, the space shuttle employs an orbital
maneuvering system and reaction control system (OMS/RCS).
Due to the hazards and difficulty involved in maintaining the
current OMS/RCS, a new design is currently under develop-
ment that employs non-toxic propellants. This new system,
which we will refer to as the NT-OMS/RCS, is the system of
interest in this paper.

FDI in the NT-OMS/RCS poses the following four chal-
lenges:

1. A real-time simulation model of the NT-OMS/RCS,
called TRICK R© [4], is available. However, a complete
mathematical model is not available for use. This sit-
uation also arises frequently when a subsystem vendor
protects the intellectual property of the system details.
In this case, the subsystem vendor may provide an
executable simulator to the system integrator.

2. The system is reasonably complex with 160 faults and
128 sensors.

3. The system response under normal and faulty conditions
is a function of initial conditions of the system (e.g.,
helium tank pressure, amount of liquid oxygen and fuel in
the tanks, etc.). This complicates the test design process
because the tests should be insensitive to random initial
conditions.

4. The possible combinations of commanded valves, cross-
feeds, and active engines causes the number of operating
modes of the NT-OMS/RCS to be extremely large (>
226). The design of tests that are (nearly) invariant to
operating modes is an engineering challenge.

The lack of a complete mathematical model of the NT-
OMS/RCS automatically rules out the possibility of an an-
alytic model-based FDI approach [9]-[15]. However, the NT-
OMS/RCS is sensor-rich, providing information on such pa-
rameters as temperature, pressure, engine thrust, and fluid flow
at many locations in the NT-OMS/RCS network. As a result,
a large amount of monitored data is available to the crew
members and mission control in real-time. In this situation, a
data-driven approach towards fault detection and diagnosis is a
feasible solution (given that real-time estimates of the system
response variables, under nominal operating conditions, are
available; these estimates can often be inexpensively obtained
using a simulator) [3].

In data-driven approaches, where failure modes are explic-
itly known a priori, a decision matrix (D-matrix) relating the
faults as rows and test results on the features of the residuals as
columns is developed off-line. These residuals are computed
from simulations of nominal scenarios and scenarios simulated
with single faults. Decision fusion (inference) algorithms,
using the test results (obtained by performing the same set of
tests that was used to develop the D-Matrix on the observed
data) and the D-matrix as inputs, provide the FDI solutions.
Since a reasonably accurate simulator is available for the NT-
OMS/RCS, that uses the commands, fault universe and initial
conditions as input parameters and that provides the estimated



sensor readings in real-time, it is an ideal candidate system
for the application of data-driven FDI methods.

For data-driven FDI schemes, the design of robust diag-
nostic tests represents a challenging task. The nature of the
observed data (e.g., sampling interval, noise), the number and
distribution of sensors, weigh heavily into the effectiveness of
the tests. In multi-mode systems, test outcomes for a given
fault may vary from one mode of operation to another. When
the number of modes is small, separate sets of tests can
be designed for each mode. Since the NT-OMS/RCS has an
extremely large number of modes (where the number of modes
is equal to the number of possible combinations of active RCS
and OMS engines), designing a separate set of tests for each
mode is impractical. Consequently, the search for tests that
are invariant (or nearly so) to the mode of operations is key.
Also, the order in which the various tests are considered in
diagnostic decisions is another issue that must be addressed.

In this paper, a data-driven FDI scheme for the NT-
OMS/RCS is devised. For proof of concept, we focus on the
aft section of the NT-OMS/RCS, which contains 160 fault
modes with 128 distributed sensors for monitoring tempera-
ture, pressure, and thrust-output. Using the proposed tests, we
are able to uniquely isolate a large number of the faults of
interest in the NT-OMS/RCS. Those that cannot be uniquely
isolated can generally be resolved into small ambiguity groups
and then uniquely isolated via manual/automated commands.
A benefit of the proposed FDI scheme is that it may serve
as a template for addressing other FDI problems for which a
complete mathematical model of the system is not available.

The rest of the paper is organized as follows. The FDI
problem for the NT-OMS/RCS is formulated in section 2.
An overview of the complete diagnostics process is given in
section 3. In section 4, we give detailed descriptions of the
diagnostic tests. In sections 5 and 6, we address the problems
of sensor faults and fault severity estimation. Test cases and
simulation results are presented in section 6 to demonstrate
the viability of the idea, and the paper concludes in section 7
with a brief summary.

II. PROBLEM FORMULATION

A. System Description

As shown in Figure 1, the new OMS/RCS consists of 14
forward thrusters, 24 aft thrusters (12 jets on both the left and
right sides), 2 orbital maneuvering engines located near the tail
of the shuttle, 4 propellant storage tanks (2 ethanol tanks and
2 liquid oxygen tanks), and a large distribution network [1].
Other components in the system include pressure regulators,
relief systems, igniters, and an assortment of valves. The
propellants are delivered to the engines under high pressure
from 4 helium storage tanks where they combine to produce
the thrust used for attitude control, rotational maneuvers, and
small velocity adjustments.

B. Fault Universe

The system is subject to four types of faults:
• leakages

• valve blockages
• igniter faults
• regulator faults

In the aft section of the NT-OMS/RCS, there are a total of
160 failure modes which are decomposed as 36 leakage, 26
igniter, 92 blockage, and 6 regulator faults. Of the four fault
classes, leakage and blockage represent the most difficult to
detect and isolate, since they can occur in various degrees of
severity. In addition, many of their characteristics (especially
for blockage) are sensitive to the initial conditions and system
modes.

C. Sensors

The aft section of the NT-OMS/RCS contains the following
sensors:

• 2 valve position sensors
• 64 pressure sensors
• 28 temperature sensors
• 26 thrust sensors
• 4 propellant mass sensors
• 4 propellant volume sensors

D. Characteristics of the NT-OMS/RCS Fault Universe

With the exception of leakages and certain types of regulator
faults (specifically the “stuck open” fault mode) , all faults in
the NT-OMS/RCS are dormant, that is, they will produce no
anomalous sensor readings until an engine or a set of engines
have been fired. Let Fi be the set of dormant faults that
produce error signals when engine i has been fired. Given
that the set of engines E have fired, the set of dormant faults
F̃ that will produce anomalous sensor readings is given by 1

F̃ =
⋃
i∈E

Fi (1)

Finally, let us define FA as the set of leakage faults and “stuck
open” regulator faults and S as the set of sensors displaying
anomalous readings. The problem then is to determine the fault
set F̂ ⊆ (FA∪F̃ ) that best accounts for the readings produced
by the sensors in S.

From further observations of the NT-OMS/RCS, the set S
is approximately given by

S =
⋃

k∈F̂

Sk|E (2)

where Sk|E are the set of sensors producing anomalous
readings when fault k has occurred and the set of engines
E are firing. The set Sk|E , in turn, is approximately given as

Sk|E =
⋃
i∈E

Sk|i (3)

where Sk|i are the set of sensors producing anomalous read-
ings when fault k has occurred and engine i fires. These
observations reduce the complexity of the FDI scheme.

1Equation (1) is based on observations made of the NT-OMS/RCS response
behavior via the TRICK R© simulator.



Fig. 1. Schematic of the NT-OMS/RCS

E. TRICKR© Simulator

As no mathematical model of the NT-OMS/RCS is avail-
able, nominal readings for the computation of error signals is
obtained by running the TRICK R© [4] simulator in parallel with
the physical system (or another simulator with injected faults)
as shown in Figure 2. TRICK R© is the simulation environment

Fig. 2. The role of the TRICK R© simulator

at the Johnson Space Center (JSC) that supports the develop-
ment, operation and analysis, and real-time human-in-the-loop
training simulations. The simulation applications range from
personal computers to full-scale robotics hardware-in-the-loop
facilities and virtual reality systems. TRICK R© provides a
data-driven real-time scheduling executive, input processing,
data recording and automatic code generation (ACG). It uses
parsing and ACG utility processors to generate input/output
mechanisms as well as mathematical model function calls.
TRICK R© supports C and C++ programming languages for
mathematical modeling, and also has limited support for

Fortran and Ada. The TRICK R© utility suite also provides
graphical, user, developer and run-time interfaces as well as
data products including strip charting.

III. DIAGNOSTICS PROCESS OVERVIEW

Figure 3 shows the block diagram of the proposed FDI pro-
cess for the NT-OMS/RCS. The process employs a simulator
and the system schematic for test design and fault detection. A
quantitative model of the system is created via the EASY5 R©

modeling tool. A TRICK R© wrapper serves as the user in-
terface. Using this simulator, different test implementation
schemes, discussed in the next section, are applied to evaluate
the detection and isolation performance. Simulations (for both
the nominal and faulty scenarios) are required to extract the
relationships between the fault causes and the observable
effects of the system. Information on the system model, such
as model parameters, test definition and simulation results, are
stored in a database.

A Diagnostic Matrix (D-Matrix) is generated using the
results of tests performed on the simulation results of the
nominal and faulty scenarios. The D-Matrix is exported in
an Extensible Markup Language (XML) format. XML is a
flexible text format and is increasingly playing a significant
role in the exchange of a wide variety of data on the web
and among many different modeling environments. Execution
of the tests, construction of the D-Matrix and generation of
the XML file can be performed using a design and analysis
environment, such as MATLAB R©.



Fig. 3. Diagnostics Process Overview

The XML file is imported into a diagnostic analysis tool,
such as TEAMS R© (Testability Engineering and Maintenance
System) [5][16], to automatically layer in the cause-effect
dependencies on a structural model. Multi-signal dependency
modeling is employed in order to maintain conformity with the
physical structure of the system. This modeling technique has
the benefit of capturing the useful and important knowledge
about the system for fault diagnosis without unnecessary
details. For the NT-OMS/RCS, the fault modes are explicitly
associated with sub-modules in the system. However, if one
needs to go beneath this layer (to more detailed component
models), a cause-effect dependency model becomes necessary.
The TEAMS R© tool, based on multi-signal dependency model-
ing, has been used for the testability analysis of large systems,
containing as many as 50,000 faults and 45,000 tests. Detailed
information about multi-signal modeling can be found in [5].

TEAMS R© computes the percent fault detection and isolation
measures, identifies redundant tests and ambiguity groups,
and generates updated Failure Modes, Effects and Criticality
Analysis (FMECA) report and the diagnostic tree. It also ex-
ports the D-matrix, the test code and structural information to
TEAMS-RT R© for on-board, real-time diagnosis. The onboard
diagnostic data is downloaded to TEAMS-RDS R© (remote
diagnosis server) for interactive diagnosis (by driving inter-
active electronic technical manuals), diagnostic/maintenance
data management, logging and trending. However, the focus
of this paper is on test design and real-time diagnosis.

A detailed picture of the real-time FDI process for the NT-
OMS/RCS is presented in Figure 4. For real-time detection,
the D-Matrix (generated offline), physical model of the system
(TEAMS R© model) and the real-time test results are fed into
TEAMS-RT R©. TEAMS-RT R© functions as the decision fusion
block, and provides diagnostic decisions that include the list
of isolated faults, suspected faults, and the tests utilized. The
process depicted here can serve as a generic FDI scheme
for systems, whose mathematical models are not available.

Customization of the FDI process for a new system requires
the design of suitable tests for that target system and loading
of its structural model into TEAMS R©.

IV. ROBUST TEST DESIGN

Of key importance in test design is the use of sensor
information, which is insensitive to the 226 modes2 of oper-
ation of the NT-OMS/RCS (i.e., all possible combinations of
active engines). Hence, for test design, we consider only those
features from sensor m, which satisfy the following criterion:

θ (rm(k|Ei)) = θ (rm(k|Ej)) ∀Ei, Ej (4)

In (4), rm(k|Ei) denotes the error signal (residual) from sensor
m when fault k has occurred and the set of engines E i are
firing and θ(·) is a function, which extracts the feature of
interest from the sensor data.

A. Determination of fault Onset Time

The fault onset time is determined from the time series as-
sociated with a sensor by using the cumulative sum (CUSUM)
algorithm [6], a simple test for determining if a random
variable has deviated significantly from its statistical mean.
Let ek be the value of the error signal from a sensor at time
tk where k = 0, 1, 2, . . .. Under the CUMSUM test, we treat
ek ∀k as an independent random variable with probability
function Pω(·) where E[ek] = ω. Define the log likelihood
function

Ω(ek) = log
Pω1(ek)
Pω0(ek)

(5)

where E[ek] = ω0 = 0 prior to the fault and E[ek] = ω1 �= 0
after the fault. Define gk as

gk =
{

gk−1 + Ω(ek) if gk−1 + Ω(ek) > 0
0 otherwise

(6)

where g0 = 0. From (6), deviations in ek which favor the
hypothesis E[ek] = ω1 are accumulated by gk and those that
favor the alternate hypothesis result in gk being reset back to
zero. The alarm time talarm is given by

talarm = ta, a = min{k : gk ≥ h} (7)

where h is a threshold which is determined based on the noise
levels of the system. The fault onset time tfault is then given
as

tfault = ts,

s = max{k : talarm − tk > 0, gk = 0} (8)

2The number of operating modes is actually greater than 226 when one
includes the number of possible commanded valve configurations in the NT-
OMS/RCS network of pipes.



Fig. 4. Block diagram of real-time FDI scheme

B. Sensor faults

Prior to fault isolation, checks are performed on all sensors
reporting off-nominal behavior. Detection of sensor faults
is accomplished by invoking a majority rule among groups
of correlated sensors. Let x = {x1, x2, . . . , xn} and y =
{y1, y2, . . . , yn} be the normalized time series reported by
sensors sx and sy , respectively. The correlation between the
normalized time-series x and y is defined as

ρ(x, y) =
1

(n − 1)σxσy

n∑
i=1

(xi − x̄)(yi − ȳ) (9)

where

x̄ =
1
n

n∑
i=1

xi, ȳ =
1
n

n∑
i=1

yi

σx =

√∑n
i=1(xi − x̄)2

n − 1
, σy =

√∑n
i=1(yi − ȳ)2

n − 1

The sensors sx and sy are grouped together, if their normalized
time-series are highly correlated. In our simulations, sx and
sy are placed in the same correlation group if |ρ(x, y)| ≥ γ =
0.75.

From simulations of the NT-OM/RCS, we have observed
that while the sign of ρ(x, y) varies from one scenario to an-
other, |ρ(x, y)| itself remains reasonably fixed. Consequently,
given the set S of sensors producing anomalous readings,
sensor sx ∈ S is identified as failed if∑

sy∈Cx⊂S

Isx,sy > 0.5|Cx| (10)

where Isx,sy is an indicator function of the event that
|ρ(x, y)| < γ, and Cx is the set of sensors in S that are
correlated with sx.

Once the faulty sensors have been identified, the failed
tests are disregarded from the decision process (see Figure 5).
Because each test fuses results from multiple sensors, there is
a great deal of built-in redundancy in the process. Hence, the
loss of information from failed sensors (provided that they are
few in number) will in general not affect the diagnosis.

Fig. 5. Sensor Validation Process

C. Blockage Test

Before proceeding to the actual test, we first identify the
sensors that are used to detect and isolate blockage faults.
These sensors are identified using the following steps.

1. ∀k ∈ FB , and ∀i, obtain S ini
k|i = Sk|i ∩ (S̄IG ∪ S̄REG)



2. For leakage faults, we observed that the absolute values
of the residuals at some sensors continued to increase
linearly until the end of the observation interval, which
we denote as tf . These sensors were identified using the
following criterion:

Sexclude = {j : θ(rj) = tmax = tf} , j ∈ Sini
k|i (11)

where rj is the observed error signal from sensor j over
the observation interval and θ(·) outputs the time at which
the error signal has the maximum absolute value.

3. ∀k ∈ FB , SB
k|i = Sini

k|i ∩ S̄exclude.
Detection and isolation of a particular blockage using the

set of sensors SB
k|i (k ∈ FB) i ∈ E is accomplished by

using the time difference between the time the error signal
first appears and the time when it reaches its peak absolute
value as a distinguishing feature. In line with the criterion
for what information can be used in the test design, this
feature is relatively robust to the mode of operation and
initial conditions. In Figure 6, a blockage in the left fuel
manifold 1 valve was simulated when engine L1U and L1L
were fired respectively. In each of the two cases, the time to
peak remained the same.

Fig. 6. Blockage: feature invariance to system mode

Define τj|(k,i) as the time to peak associated with sensor j
(j ∈ SB

k|i) when blockage k has occurred and engine i fires.
The decision that blockage k has occurred is made if∑

j∈SB
k|i

|θ(rj) − τj|(k|i)| ≤ εk|i (for any i ∈ E) (12)

where θ(·) in (12) outputs the time to peak of the error signal
associated with sensor j and εk|i is a decision threshold for
blockage k given engine i.

D. Igniter fault Test

An igniter fault results in a significant drop in the chamber
pressure and thrust output of the corresponding engine (which
is firing at the time). It also causes large deviations in the
nominal fuel injector temperature of the engine. Each engine
is monitored by three sensors (each monitoring one of the

aforementioned parameters). Consequently, we use a majority
rule to isolate an igniter fault. Define Ip,j , It,j , and If,j as indi-
cator functions for the event that a large deviation is observed
in the sensors that monitor chamber pressure, fuel injector
temperature, and thrust output of engine j, respectively. Engine
j’s igniter has failed if

Ip,j + It,j + If,j ≥ 2 (13)

The use of a majority rule also makes this test robust to sensor
faults.

Fig. 7. Thrust anomaly

Fig. 8. Igniter: pressure anomaly

E. Regulator fault Test

The NT-OMS/RCS system is equipped with six helium
regulators; three of each are located in the fuel-helium legs
(A, B, C) and the oxygen-helium legs (A, B, C). We have
observed that the sensor that monitors the pressure at the
fuel-helium manifold has a distinct waveform (see Figure 9)



whether the heilum valves fail “stuck open” or “stuck closed”.
For simplicity, we will refer to this sensor as sensor sfu. The
same waveform was observed at the sensor that monitors the
pressure at the oxygen-helium manifold; we will refer to this
sensor as sox. From Figure 9, the residuals produce a narrow
spike and then settle down to a steady state value. Since the
transient is quite narrow, for identification of this waveform,
we employed a multi-resolution analysis technique in the time-
frequency plane. Discrete wavelet transform (DWT) is a multi-
resolution analysis that provides coefficients, which represent
the rate of deviation of a signal at their corresponding locations
on a time scale[7] [8]. Consequently, DWT is used to isolate
the coefficients belonging to the transient region and compare
them with our expectations of the fault; helium regulator faults
are detected and isolated via this comparison.

The procedure for detecting and isolating a helium regulator
fault in the fuel legs is as follows. Define {di}i i = 0, 1, . . .
as the set of level 2 detailed coefficients (obtained via wavelet
transform using a Duabechies 10 mother wavelet) associated
with the residual at sensor sfu. Define imax as the index of the
coefficient with the maximum absolute value. Then, the signifi-
cant coefficients are determined via the set {ci} = {di}imax+q

imax−q

where q is a user selected parameter which determines the
range of significant coefficients. The decision that a helium
regulator in a fuel leg has failed is made if

max
i

{ci} − min
j

{cj} ≥ β (14)

where β is a threshold. To detect and isolate a helium regulator
fault in the oxygen legs, we repeat the above procedure by
replacing sfu with sox.

Since only one sensor is available for monitoring the three
helium regulators in legs A, B, and C, a helium regulator fault
in a fuel leg is detected with an ambiguity group of size three.
The same is true of detecting a regulator fault in an oxygen
leg.

Fig. 9. Fuel Reg. C: pressure anomaly detected by DWT

F. Leakage Test

Having ruled out regulator faults which produce distinct,
transient signatures (whether in the “stuck open” or “stuck
closed” fault mode), any continual off-nominal behavior that
occurs while the engines are off and the system has reached
steady state, is the result of leakages. Consequently, the
detection of leakages should be made while the system is at
rest (i.e., no active engines).

Isolating the location of a leakage is conducted in two stages
using qualitative relationships. The first stage examines the
direction of change (+/−) of the error signals associated with
each leakage fault. Note, in Figure 10, that the sign of the error
signal for a particular leakage (in this case a helium leakage
in the left fuel tank) remains the same regardless of which
engine fires.

Given that a single leakage has actually occurred, the test
produces an ambiguity group that is typically of size 7 or
lower. Leakage k is a member of the group if∑

i∈Sk|∅

|θ(ri) − ξi|k| = γ (15)

where ri is the observed error signal from sensor i, ξ i|k ∈
{−1, 1} is the known direction of change of the error signal
associated with sensor i when leakage k has occurred3, θ(·)
outputs the sign of the sample point in ri with the largest
absolute value if that value exceeds a threshold ε; otherwise,
it outputs a zero, and γ is the minimum of (15):

γ = min
k∈FL




∑
i∈Sk|∅

|θ(ri) − ξi|k|

 (16)

In the second stage, the size of the ambiguity group is
reduced by comparing the steady state pressure at each leakage
location4. As the actual leakage faults will be associated with
the lowest steady state pressure drop, leakage k is selected as
a possible candidate if

pj − pk ≥ λ, for some j �= k, j, k ∈ A (17)

where pj and pk are the steady state pressures associated
with leakages j and k, respectively; A is the ambiguity group
obtained in stage 1; and λ is a threshold. Using (17), we can
generally reduce the ambiguity groups of size 7 to groups of
size 3 or 4.

Based on the structure of the NT-OMS/RCS, there exist four
primary ambiguity groups:

• Leakages on the left side that are associated with the
liquid oxygen line.

• Leakages on the left side that are associated with the fuel
line.

• Leakages on the right side that are associated with the
liquid oxygen line.

3This information is known by observing the effects of the various leakages
on the NT-OMS/RCS.

4The pressure information for each leakage fault is provided by a local
sensor.



• Leakages on the right side that are associated with the
fuel line.

Consider the case when the ambiguity group A contains
leakage faults from more than one primary group. If the
suspected leakages in A were partitioned according to their
associated primary groups, then we can expect there to be at
least one leakage fault in each of the resulting groups. The
reasoning for this is that in the single leakage scenario, the
ambiguity group A almost always contains leakage faults from
a single primary group. Hence, if A contains leakage faults
from different primary groups, there is at least one leakage
fault from each of the representative primary groups in A.
So, adopting a divide and conquer strategy, the procedure in
these instances is to partition A into groups where each group
contains members from only one primary group, and then to
apply stage 2 to each of the new groups.

Fig. 10. Leakage: feature invariance to system mode

V. ESTIMATION OF LEAKAGE AND BLOCKAGE SEVERITY

Once a leakage or blockage has been isolated, its severity
is estimated using the following variables:

• pressure in the (fuel) helium tank
• pressure in the (oxygen) helium tank
• volume of the right fuel tank
• volume of the right oxygen tank
• volume of the left fuel tank
• volume of the left oxygen tank

In addition to the above variables, which comprise the initial
conditions of the NT-OMS/RCS, data is taken from pressure
sensors near the isolated fault.

The aforementioned variables, which we denote as
{x1, x2, . . . , xk}, are the inputs to a severity estimator

f(x1, x2, . . . , xk) =
k∑

i=1

cT
i xi + c0 = ŷ (18)

where c0 is a bias term and

xi = [ xi x2
i . . . xk

i ]T

ci = [ ci1 ci2 . . . cik ]T

The coefficient vectors {ci}k
i=1 were estimated from the

simulation data and were optimized in the least squares sense.
For blockages above 30%, the blockage severity can be

estimated to within ±5% of the true blockage value. In the
case of leakages, holes greater than 0.6in2 can be estimated
to within ±0.3in2 of the true hole size. For both leakages and
blockages, k = 4 was the polynomial order.

VI. SIMULATION RESULTS

In this section, we present several examples to demonstrate
the feasibility of the proposed FDI scheme. In each example,
the observed sensor data at each instant of time is perturbed
with zero mean additive white Gaussian noise with a standard
deviation of 0.2 to examine the effects of imperfect data on
the diagnosis. Leakage faults were simulated with 0.5in2 holes
and blockage faults were simulated with severity at 25%.

A. Leakage faults

Example 1: In this example, the Left OMS and R1R RCS
engines were fired at t = 6 and t = 8 seconds, respectively. A
leakage fault in the left fuel helium tank occurred at t = 10
seconds. Both engines stopped firing at t = 12 seconds. For
this case, the FDI scheme uniquely isolated the leakage fault.

Example 2: The same firing scenario used in example 1
is applied here. A leakage in manifold 1 of the right oxygen
line took place at t = 4 seconds. The fault in this case was
uniquely isolated.

Example 3: In this example, we fire the L3D and R2R RCS
engines at t = 15 and t = 17 seconds, respectively. A leakage
in flow path A of the left fuel line took place at t = 18 seconds.
The L3D and R2R RCS engines stopped at t = 20 and t = 21
seconds, respectively. In this case, the FDI scheme produced
an ambiguity group of size 3, where the actual leakage fault
was a member of the group. It should be noted that unique
isolation is possible if manual/automatic tests are applied, that
is, commanding certain valves to open and close to pinpoint
the exact location of the leakage.

Example 4: In this example, the Left OMS engine and L2L
RCS engine were both fired at t = 9 seconds. The L2L RCS
engine and Left OMS engine stopped at t = 11 and t = 15
seconds, respectively. A leakage in the oxygen crossfeed line
occurred at t = 16 seconds. This fault was uniquely isolated.

B. Igniter faults

Example 5: In this example, we failed the igniter for
the L1U RCS engine which was activated for a two second
duration. This fault was uniquely isolated.

Example 6: In this example, we failed the igniters for the
L4D and R3A RCS engines. These engines were fired for a
period of 1 second. Both igniter faults were isolated uniquely.

C. Regulator faults

Example 7: In this example, the L1U RCS engine was fired
at t = 7 seconds. The helium regulator in fuel leg B was failed
at t = 9 seconds and the engine stopped firing at t = 12
seconds. The outcome of the FDI scheme was an ambiguity
group consisting of the three heilum regulators in the fuel legs.



Example 8: In this example, the L1U and L2D RCS engines
were fired at t = 5 seconds and the right OMS engine was
fired at t = 6 seconds. The L1U RCS engine was stopped at
t = 7 seconds. The helium regulator in fuel leg C was failed at
t = 8 seconds followed by the helium regulator fault in oxygen
leg A at t = 9 seconds. The L2D RCS and right OMS engines
stopped firing at t = 11 and t = 13 seconds, respectively. The
outcome of the FDI process was an ambiguity group of size
6 consisting of the helium regulators.

D. Blockage faults

Example 9: In this example, the L2D and R1U RCS engines
were fired at t = 10 seconds and t = 12 seconds, respectively.
A blockage in the fuel line of the engine L2D occurred at
t = 13 seconds. Both the engines stopped at t = 14 seconds.
The outcome of the FDI process was an ambiguity group of
size 3. The actual blockage fault was a member of that group
(other 2 faults were blockage in the oxygen line of the engine
L2D and blockage in left fuel manifold 2).

Example 10: In this example, the Left OME and the L2D
RCS engines were both fired at t = 7 seconds. A blockage
in the right oxygen manifold1 occurred at t = 9 seconds. The
L2D RCS engine and the Left OME stopped at t = 11 seconds
and at t = 15 seconds, respectively. The outcome of the FDI
process was an ambiguity group of size 2. The actual blockage
fault was a member of that group and the other member was
blockage in the right fuel manifold 1.

E. Sensor faults

Example 11: The scenario that was presented in Example
3 is duplicated here with the exception that the sensor that
monitors pressure in flow path A of the left fuel line was failed
in addition to the leakage in that same location. The time series
from this sensor was replaced by a sequence of white Gaussian
random variables with zero mean and variance 1. The faulty
sensor was detected and its information was discounted from
the test process. As a result of losing the information from
this sensor, the size of the ambiguity group increased from 3
to 5.

F. Estimation of Fault Severity

Example 12: In this example, we replicated the scenario that
was presented in example 9. We simulated the scenario with
30% , 40%, 50%, 60%, and 70% blockages in the left fuel line
of the engine L2D. The respective estimates for these cases are
34.424%, 44.951%, 54.597%, 63.165%, and 70.845%. When
the severity of the blockage is in the range of 30% to 80%,
the estimates are within ±5% of the actual value.

Example 13: In this example, engine R1U was fired at t = 7
seconds . A leakage in the fuel-helium tank occurred at t = 11
seconds, and the engine stopped firing at t = 12 seconds.
We simulated the scenario for holes of sizes 0.4in2, 0.6in2,
0.8in2, 1in2, 1.2in2, 1.4in2, 1.6in2, and 1.8in2. The estimated
hole sizes for these cases are 0.675in2, 0.813in2, 0.998in2,
1.179in2, 1.354in2, 1.521in2, 1.706in2, and 1.892in2, respec-
tively.

VII. CONCLUSION

A data-driven FDI scheme was developed for the aft sec-
tion of the NT-OMS/RCS which is capable of detecting and
uniquely isolating many of its faults; those faults which cannot
be uniquely isolated by the scheme can often be resolved into
small ambiguity groups. While the basic approach can clearly
be applied to other FDI problems for which a complete math-
ematical model of the system is not available, the proposed
scheme is still system specific. Future work will focus on the
development of a generic data-driven FDI methodology that
will allow for easy extension to other FDI problems for which
model-based diagnosis is not possible.
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