
1

REMOTE DIAGNOSIS SERVER1

Dr. Somnath Deb, Dr. Sudipto Ghoshal, Venkata N. Malepati and Kevin Cavanaugh,

Qualtech Systems, Inc., 100 Great Meadow Road, Suite 501, Wethersfield, Connecticut 06109

Email: deb@teamqsi.com; Web: http://www.teamqsi.com/rds

1 This research has been sponsored by the Army Research Office (DAAG55-98-C-0057) and NASA-ARC (NAS2-99049).

Abstract

Modern systems such as fly-by-wire aircraft,
nuclear power plants, manufacturing facilities,
battlefields, etc. are all examples of highly
connected network enabled systems. Many of these
systems are also mission critical, and need to be
monitored round the clock. Such systems typically
consist of embedded sensors in networked
subsystems that can transmit data to central (or
remote) monitoring stations.

Moreover, many legacy systems were originally
not designed for real-time onboard diagnosis, but
are safety critical, and would benefit from such a
solution. Embedding additional software or
hardware in such systems is often considered too
intrusive, and introduces flight safety and validation
concerns. Such systems can be equipped to
transmit the sensor data to a remote-processing
center for continuous health monitoring.

At Qualtech Systems, we are developing a
Remote Diagnosis Server (RDS) that can support
multiple simultaneous diagnostic sessions from a
variety of remote systems. The RDS server is built
on a three-tier architecture with a “Broker”
application in the middle layer, and multiple
TEAMS-RT and TEAMATE based reasoners at the
backend. The client layer consists of sensor agents
that collect test results and transmit them over a
message-passing network. The resultant solution is
remarkably efficient. Even an old 50MHz Sparc20
can support tens of concurrent sessions involving
hundreds of tests. The solution scales easily to
hundreds of sessions in any modern workstation or
server.

Inspired by the significant interest from the
aerospace community, we are enhancing the
scalability of our RDS solution to solve huge and
complex systems such as system-wide health
monitoring of the International Space station or a
fleet of commercial jetliners. We also recently won
an STTR from NASA to make RDS accessible to
automobiles and appliances over standard wireless
telephone networks.

Introduction

Continuous on-line real-time failure detection,
and isolation capability is essential to economical
operation of complex systems. Such a capability:

• Improves operational safety: Root causes, and
their criticality, are quickly and automatically
identified, and possibly mitigated

• Improves availability: Since most, if not all,
the diagnosis is performed online, downtime for
troubleshooting is minimized

• Improves confidence in system
serviceability: The resultant system-wide self-
test and monitoring capability enables the health
of the system to be continuously and accurately
assessed, with a high degree of certainity.

To sum up, a real-time fault detection and
isolation solution is essential to faster, cheaper and
better operations of complex systems. It also
reduces the likelihood of operational failures and
disasters due to sudden failures, thereby improving
system safety and availability.

In an effort conducted with NASA-ARC in 1996,
we had developed a model-based reasoning engine,
TEAMS-RT [1,2,3], for the detection and isolation

2

of multiple faults. The key features of TEAMS-RT
are:

• Separation of the system-specific knowledge,
captured in terms of models, from the fault-
isolation methods. This allows for the same tool
to be used on multiple systems using different
models.

• Ability to diagnose multiple failures in fault-
tolerant systems with multiple modes of
operation.

• Ultra-compact memory requirements: only
about 2 MB for two subsystems with 1000
failure sources and 1000 test points each.

• Excellent performance using low-end
microprocessors (e.g., less than 200ms for the
above-mentioned system on a 75MHz Pentium
processor).

The TEAMS-RT reasoning engine is therefore an
ideal choice for real-time embedded diagnosis.
Indeed, we are utilizing it for health monitoring of
diverse systems – from Helicopter engine [4] and
transmission [5] to 1553 bus systems in the
International Space Station [6]. However,
embedding additional software in onboard systems
and/or HUMS computers often introduce flight
safety and validation concerns; the aerospace
community is extremely reluctant to introduction of
new hardware and/or software in flight approved
systems. This has been a significant hindrance to
the acceptance of embedded diagnosis solutions
based on TEAMS-RT.

The International Space station, for example, is
sensor rich. It, as well as most other NASA space
systems, transmits voluminous amounts of sensor
data to ground support systems (at NASA-Johnson
Space Center, Houston, Texas) for health
assessment. This data stream is near real-time, and
consists of detailed sensor data from multiple
subsystems on board the spacecraft. This presents
an unique opportunity. We can demonstrate a real-
time remote monitoring solution that utilizes this
telemetry data to monitor the health of the various
subsystems and we can demonstrate the benefits of
an onboard solution, without having to actually
install any software on the space station itself !

Moreover, sensor-rich systems, lacking a built-in
health monitoring capability, are not rare. For
example, OTIS has elevator systems, and Pitney-
Bowes has copy machines, which are capable
transmitting sensor data to remote service centers.
Even the modern automobile has plenty of sensors,
and some models even have wireless
communication links (e.g., OnStarTM systems). All
of these systems could benefit from a tele-diagnosis
capability, where remote data-streams from
multiple subsystems are processed by offsite
reasoners for diagnosis and prognosis of the remote
system(s). Implementation of such a tele-diagnosis
server system is significantly cheaper than
embedding reasoners in the subsystems, and would
pay for itself by the savings realized from reduction
of service calls by technicians.

In fact, in an increasingly connected world, it is
not hard to imagine systems ranging from
household appliances to sophisticated aircraft
systems routinely connecting to remote reasoning
services for periodic health assessment and
diagnosis. According to more radical views of the
future, all our appliances, from the toaster oven to
the dishwasher, refrigerators and washing
machines, will be networked and inter-operating
utilizing technologies such as Jini (a technology
invented by SUN) or Universal Plug and Play
(Microsoft’s answer to Jini). Such a connected
world would open doors to a huge market for RDS,
with applications in monitoring and diagnosis of
millions of appliances.

The RDS Framework

The RDS framework is a three tier scalable server
architecture consisting of a middle layer (called
“broker”) that performs session management, flow
control, message buffering and routing, and load
balancing. The back ends are server products based
on TEAMS-RT (for real-time diagnosis) and
TEAMATE (for interactive diagnosis) and a
database backend built around TEAMS-KB. The
reasoning is model driven, utilizing multisignal
models developed in TEAMS. Thus, the RDS
framework makes QSI Integrated Diagnostic
Toolset [7] (consisting of TEAMS, TEAMATE,
TEAMS-RT and TEAMS-KB) accessible over the

3

network to any communication capable system in
need of diagnosis (Fig. 1).

Architecture

The essential constructs of the RDS framework
had been described in an earlier paper [8] and is not
repeated here. A demonstration of remote diagnosis
along with a PDF version of the paper is available
in http://www.teamqsi.com/rds.Since then, the
scope of the architecture has significantly
expanded. The major addition to the architecture is
the inclusion of a TEAMATE and TEAMS-KB(Fig.
2). The TEAMATE server is based on QSI’s
TEAMATE tool, which is an adaptive, intelligent
diagnostic engine for field (offline) maintenance.
Addition of the TEAMATE server allows for a truly
distributed, web-based adaptive and interactive
diagnosis. Such a capability is of great value to the
field technician as it lets him conduct the diagnosis
on a local system despite the absence of locally
available Interactive Electronic Technical Manuals
(IETMs) and models that fit the configuration of the
specific system that is being diagnosed. The RDS
framework also allows the updates of configuration

data and IETMs at the server location that can be
safe and secure as opposed to a location in the field.
This also results in significant savings in the cost of
maintenance and distribution of technical manuals
and resources.

The architecture, in keeping with its distributed
nature, has been modified such that the intelligent
diagnostic engines and their corresponding agents,
that allow the communication with the broker, no
longer exist as a single entity (Fig. 2). Breaking up
the diagnostic engine and the agent allows the two
to be distributed across the network. In order to
serve a new request, the broker simply starts
another agent. Based on the data received from the
broker, the agent is responsible to bind to the server
for the appropriate diagnostic engine. This allows
the broker to function completely independent of
the data and focus on tasks that improve the
scalability, robustness and the integrity of the
architecture. Separation of the agent and the
diagnostic engine also allows the diagnostic engines
to be hosted on completely separate machines. The

Figure 1: QSI’s Integrated Toolset and Remote Diagnosis Server

TEAMATE
•Reasoner
•Drive IETM
•Dynamic
(intelligent
diagnostics)

B2B

Network

Diagnostics Services Provider

TEAMS-KB

Remote Diagnostic
Server (RDS)

Supply Chain Optimization S/W

B2B Data System

TEAMS-RT
TEAMS-KB
•Maint./Diag. Trending
•Model Management
•Collect Field Data/History

TEAMATE

TEAMS-RT
•Automatic, Remote Diagnostics
•Upload test data and run RT
•Post diagnostic/prognostic results

TEAMS
•Upload/Download Diagnostic Models
•Use “best in class” model libraries
•Perform analysis / improve diagnostics
•Specify prognostic test routines

4

diagnostic state of each of the systems is also
maintained as data in the shared memory
maintained by the broker. In case of a failure of the
diagnostic engine or the machine on which it
resides, the diagnostic state can be easily transferred
to another such engine residing on a completely
separate location. All that is transparent to the user
as the agent associated with the session in progress
handles the transfer mechanism.

Figure 2: Distributed architecture of Remote
Diagnosis within the RDS framework

TEAMS-KB, QSI’s database-centered diagnostic
knowledge management tool is in the process of
being integrated in the RDS framework. TEAMS-
KB, an Oracle Enterprise database, has model and
diagnostic data management as its core features.
Model management includes the capability to create
and modify models and components that comprise
the model. It manages model and test libraries and
along with TEAMS, provides an integrated
environment for model development. Diagnostic
data management includes capturing and managing
diagnostic test and session history logs, managing
schedules and tracking and predicting parts
requirements. Its interface also allows easy ties to
existing custom database systems that perform the
above maintenance related actions.

The database agent is a specialized version of the
generic agent that is used by the diagnostic engines.
The database agents, in addition to the usual read
and write capabilities to the message pool, can bind
to TEAMS-KB and invoke its stored procedures. It
can, therefore, query the database to retrieve or
insert the session’s diagnostic state, test, and parts

replacement history. The database agent obtains the
information from the message pool maintained by
the broker. Storage of the session’s diagnostic state
and history data allows easy display of such
information by any web-based monitoring console
which can use the standard Open Database
Connectivity (ODBC) protocol to invoke TEAMS-
KB and obtain the required data. Since this process
is essentially asynchronous with the RDS server,
the display process does not impact the general
performance of the RDS server. The database
handles all the locking and buffering mechanisms
normally associated with such asynchronous
processes.

At least three different types of usage are
anticipated of the RDS framework, namely
telediagnosis, remote health monitoring and a
command center console (fig. 2,3). All of the three
functionality as supported by the current
architecture can involve multiple, distributed
systems. Telediagnosis [8] involves diagnosis of
such a distributed system where sensor data from
the distributed systems are processed and via the
message pool of the central broker are transferred to
different diagnostic agents. The output of the
diagnostic modules is conveyed back to the
telediagnosis console via the message pool or via
the TEAMS-KB database. The remote monitoring
functionality is similar to the telediagnosis feature
except that it features only the TEAMS-RT agents
which, based on the processed sensor data, updates
the health status of the distributed systems in near
real-time. The command center console (Fig. 3) is a
more interactive version of the telediagnosis feature
whereby the user can place different commands to
the diagnostic agents via the message pool to
actively monitor and diagnose one or many of the
distributed systems. The command center console
subsumes the functionality of the other two usages
and provides the maximum flexibility in terms of
controlling the functionality of the different
diagnostic agents. The command center console
allows interactive diagnosis with a TEAMATE
agent and can invoke stored procedures within
TEAMS-KB to generate comprehensive, global
system health reports and analyses of all the
different systems. It can also utilize the failure and
diagnostic history of different systems and can
invoke TEAMS-KB procedures to display failure

5

predictions thus allowing the maintenance
community to prepare for a possible failure before it
actually happens.

Figure 3: A view of the Command Center
console

Figures 4 and 5 show some of the interaction
between QSI tools, primarily TEAMS-RT,
TEAMATE and TEAMS-KB. In Figure 4, the focus
is on TEAMS-RT and TEAMS-KB interaction
while in Figure 5 the focus is on TEAMATE and
TEAMS-KB interaction. We anticipate a central
role for TEAMS-KB in both processes as well in
the entire RDS framework. When processed sensor
data from a new sensor agent are sent to the
message pool, the broker, based on the RDS
configuration, launches a new agent for TEAMS-
RT. Alternatively, the database agent logs the new
data to TEAMS-KB, triggering TEAMS-KB to
launch TEAMS-RT agent to process the data. The
TEAMS-RT agent contacts the TEAMS-RT server
with a unique key that is assigned by the broker or
TEAMS-KB. The TEAMS-RT server loads the
model from TEAMS-KB and processes the current
data and any other subsequent data for the session
retrieved from TEAMS-KB. The TEAMS-RT agent
retrieves the health report from the server and
writes them to the message pool. The database
agent obtains the health report from the message
pool and logs the report to TEAMS-KB for further
analysis.

The TEAMATE process can be started in two
ways. When the health status report, generated by

the TEAMS-RT process and logged in TEAMS-
KB, has an ambiguity group, stored procedures in
TEAMS-KB gets triggered which launches
TEAMATE. Alternatively, TEAMATE can be
launched manually through the interface of the
command center.

TEAMS-RT processes
test results, generates

health report and
uploads to TEAMS-KB

TEAMS-KB TEAMS-KB

TEAMS-RT TEAMS-RT

Launched by user/ext.
process. Loads model

from files, test data from
files or ext. process

TEAMS-RT
configuration,
files or KB ?

Launched by
TEAMS-KB

with a unique
key as an
argument.

TEAMS-RT loads model
from TEAMS-KB, test data
from files, TEAMS-KB or

ext. process

TEAMS-KB
generates

ready-to-view
text and web-
based reports

Use files Use KB

Figure 4: TEAMS-RT processing and its
interaction with TEAMS-KB

In the automated launch sequence, TEAMS-KB
generates a unique key for the session and launches
TEAMATE with the key as an argument. The key
also identifies the model to be loaded from
TEAMS-KB. TEAMATE loads the model and is
ready for the interactive session. Depending on the
requirements of the maintenance group, there may
be a user login screen for starting the interactive
session. Typically, for scheduled and unscheduled
maintenance actions, the maintenance group assigns
a technician to perform the job. The login process
allows tracking the job and monitoring the
performance of the technician. The username and
password are authenticated in TEAMS-KB and if
available, TEAMATE may download the
technician’s expertise profile from TEAMS-KB.
The profile allows TEAMATE to adapt the test
strategy and the presentation of the contents from
the IETM, to the technician’s expertise level.

The interactive session comprises TEAMATE
presenting the technician with specific actions, like
test procedures to perform. The technician indicates
the completion and outcome of the test procedure to
TEAMATE. Based on the test outcome,
TEAMATE computes the next best test to be
performed until the failure is isolated or an

6

ambiguity group is reached which cannot be further
isolated. The technician replaces the faulty
component/s and goes through the operational
check procedure using TEAMATE. At the end of
the diagnostic process, TEAMATE logs all the
technician’s actions as recorded by TEAMATE
with timestamps into TEAMS-KB. Based on the
session history logged, TEAMS-KB can update the
expertise profile of the technician. The parts
replacement data captured are used by TEAMS-KB
for parts management and prediction.

Simulation Results

 We ran our remote diagnosis server, consisting of
the Broker, RT-Agent, and TEAMS-RT, on a Sun
SS20/502 system with 50 Mhz SuperSPARC
processor, 224 Mb of RAM. We picked a slow
computer for the remote diagnosis server because
the time routines were unreliable in the sub-ms
range, and the run-time of the broker could not be
reliably measured in the faster computers. We ran
the Sensor-Agent clients on both Sun boxes and
Windows NT PCs with various hardware
configurations. We also ran a web server to serve
the monitoring console on the SS20. We collected

several performance-related metrics for the
different modules and the CPU processing times
and memory requirements for the messages on the
server-side. We also performed simulations with
dozens of concurrent clients to verify the scalability
of our architecture. The hardware to host the server,
the tests and models that we used were the same as
in the evaluation of the tele-diagnosis architecture
as reported in the earlier paper [8]. The
performance metrices shown here are hence,
directly comparable to those of the earlier
architecture.

Table 1 shows some of the results obtained for the
Broker, RT-Agent and the TEAMS-RT modules for
different diagnostic models. The objective here is to
determine the computational load to the remote
diagnosis server for problems of various sizes.
Significant improvement resulted in the CPU times
of the RT-agent. Overall, there was an improvement
factor in the CPU runtime, of four and a half times
in the new architecture. This improvement was
primarily a result of the RT-agent reporting results
only when the diagnosis changed. The broker and
the TEAMS-RT times remained unchanged from
the previously reported results. The database agent
and the command center console are still in

TEAMATE
launched by

TEAMS-KB with a
unique key as an

argument.

TEAMATE loads
TEAMS-RT health

report from TEAMS-
KB to start diagnosis

TEAMATE loads
model linked to

the key from
TEAMS-KB

TEAMS-KB
prepares/serves
content using

technician’s profile

TEAMATE
suggests next

step, loads
content from
TEAMS-KB

TEAMS-KBTEAMS-KB

TEAMATETEAMATE

Human interactionHuman interaction
through TEAMATEthrough TEAMATE

User logs on.
TEAMS-KB

authenticates user
and loads profile

Based on parts
repaired, replaced,

TEAMS-KB updates
the model

configuration

User responds to
 TEAMATE
suggestions

TEAMATE uploads
all user actions

with timestamps to
TEAMS-KB

Based on the
technician’s actions

and timestamps,
TEAMS-KB updates

his profile

Diagnosis
complete

Figure 5:TEAMATE processing and its interactions with the user and TEAMS-KB

7

development and the runtime performance with
these new modules will be reported later. The
performance of the agents are expected to improve
further as they will no longer be responsible for
displaying the results. The command center or the
monitoring console which display the results, run
asynchronously with the broker and are only limited
monitoring console which display the results, run
asynchronously with the broker and are only limited
by the performance of the database and its
throughput.

These results clearly confirm that with the new
architecture being more distributed, even the old
SS20/502 could scale further and provide remote
diagnosis capability to hundred’s of clients, as the
reasoners are run on remote (faster) computers for
models consisting of more than 1000 failure sources
(using socket connections between the RT-Agent
and TEAMS-RT, as outlined in Fig. 2).

Conclusions

The development of RDS is a major milestone in
our plan for commercializing integrated system
design, diagnostic and prognostic tools. Our
integrated toolset help achieve lower life-cycle
costs by addressing reliability, testability and
maintainability issues: failure analysis, design for
testability, automated testing, interactive diagnosis,

and real-time system health monitoring. While
many of our competitors offer products in the areas
of integrated diagnosis, most lack a real-time
diagnosis engine, and none have a networked
diagnosis server capability. Until now, real-time
diagnosis and prognosis have been available to a
selected few multi-million dollar applications. The
remarkable aspect of this technology is that it is
accessible over internet and modems, making real-
time diagnosis universally accessible! This is a key
discriminating factor that will enable us to reach
beyond the niche market of integrated diagnosis,
and tap into consumer applications and e-business.

For example, the modern automobile has enough
sensors to detect the slightest performance problem.
The engine computer(s) monitor fuel mixture and
ignition system for optimal fuel efficiency, drive-
train computer(s) monitor the grade of the road,
torque and acceleration to select the correct gear,
and antilock brake systems detect wheel lock ups
and dynamically adjusting for brake wear. Some
high-end models already come equipped with
communication links (e.g., OnStarTM by Cadillac)
that can report mishaps, e.g., an accident causing
airbag deployment, to a central monitoring station.
In a few years, such features will be available on all
cars. Presently, such communication links are
offered primarily as a safety net, or as a link to
customer and concierge services. However, they
can easily be adapted to transmit onboard data to a
RDS service where car troubles can be quickly

Model Number of
Tests

Pass / Fail

Number of
Faults

inserted /
total modeled

RT-agent
CPU run

time in ms
New/old

Broker CPU
run time in

ms

TEAMS-RT
CPU run

time in ms

1553 59 / 2 2 / 174 55/250 10 < 5
Transmission

system
46 / 5 2 / 160 49/210 9 < 5

EEATCS 9 / 134 2 / 78 55/250 12 < 5
Documatch 175 / 5 2 / 259 60/230 7 < 5

LO2 329 / 39 3 / 167 80/300 7 < 5
Engine System 274 / 32 3 / 255 75/300 7 < 10
LGCU-WRA 1003 / 316 4 / 2080 250/500 12 < 250

Table 1: Simulation results for 7 different models of varied complexity

8

diagnosed. It is therefore conceivable that soon, the
driver of a stalled car will be able to get a prompt
diagnosis using RDS service, and AAA would
dispatch roadside assistance with the exact spare
part required to fix the problem. The applications of
RDS are not limited to the automobile. Remote
health monitoring of home-care patients and
battlefield soldiers are two of the more promising
applications. Modern high rise buildings consist of
elevators, escalators, heating and ventilation
systems etc. that also need to be monitored round
the clock. Utilizing RDS, a central facility could
monitor entire cities of high-rise buildings from one
central location.

RDS is an essential piece of technology that
makes such applications feasible.

References
[1] Patterson-Hine, A., Kulkarni, D., Deb, S. and
Wang, Y., 1998, Automated System Checkout to
Support Predictive Maintenance for the Reusable
Launch Vehicle, Proceedings of the IEEE
International Conference on Systems, Man, and
Cybernetics, San Diego, October 11-14.

[2] Kulkarni, D., Patterson-Hine, A., Holthaus, M.,
Deb, S., and Pattipati, K.R., 1995, Degradation
Detection and Testability Analysis in Propulsion
Checkout and Control System, Proceedings of the
Aerotech, Los Angeles, CA.

[3] Mathur, A., Deb, S., and Pattipati, K. R., 1998,
Modeling and Real-Time Diagnostics in TEAMS-
RT, Proceedings of the American Control
Conference, Philadelphia, June 24-26.

[4] Joint Advanced Health and Usage Monitoring
System - Advanced Concept Technology
Demonstration, Phase I, Final Report, Sikorsky
document no. SER 521365, August, 1998. Also,
http://www.dt.navy.mil/jahums/ JAHUMS Project
Homepage.

[5] An Onboard Real-time Aircraft Diagnosis and
Prognosis System. Technical Progress Report on
NAS2-99048. October 26, 1999.

[6] A Systematic Integrated Diagnostic Approach to
Software Testing. Technical Progress Report on
NAS2-99049, September 27, 1999.

[7] Deb, S., Pattipati, K.R. and Shrestha, R., 1997,
QSI’s Integrated Toolset, Proc. IEEE Autotestcon,
Anaheim, CA, pp. 408-421.

[8] Deb, S., Ghoshal, S., Malepati, V.N. and
Kleinman, D.L., 2000, Tele-diagnosis: Remote
monitoring of large-scale systems, Proceedings of
the IEEE Aerospace Conference, Big Sky, MT.

