IEEE AES Systems Magazine, May 1995

William E. Peterson Best Paper on New Technology, IEEE AUTOTESTCON 1994 . 1

Multi-Signal Flow Graphs : A Novel Approach for System Testability
Analysis and Fault Diagnosis*

Somnath Deb Krishna R.Pattipati

Vijay Raghavan

Mojdeh Shakeri Roshan Shrestha

Dept. of Electrical and Systems Engineering,
U-157,University of Connecticut,, Storrs, CT 06269-3157.

Phone (203)-486-2890

Abstract

In this paper, we present a comprehensive methodology
for a formal, but intuitive, cause-effect dependency mod-
eling using multi-signal directed graphs that correspond
closely to hierarchical system schematics and develop di-
agnostic strategies to isolate faults in the shortest possi-
ble time without making the unrealistic single fault as-
sumption. A key feature of our methodology is that our
models lend naturally to real-world necessities, such as
system integration and hierarchical troubleshooting.

1 Introduction

Diagnosis is the process of identifying the cause of a mal-
function (fault) by observing its effects at various mon-
itoring (test) points in a system. As technology ad-
vances, there is a significant increase in the complex-
ity and sophistication of systems. Moreover, integra-
tion and miniaturisation have sharply limited access to
test points. Thus, the number of possible causes have
increased while reduction in monitoring points have re-
sulted in reduced fault observability, making it increas-
ingly difficult to troubleshoot these systems. Conse-
quently, system maintenance presents formidable chal-
lenges to manufacturers and end users. In this vein,
Computer-aided design techniques for system modeling
and diagnosis are of paramount significance.
Maintenance and design have traditionally been two
separate engineering disciplines with often conflicting ob-
jectives — maximizing maintainability versus optimizing
performance, size and cost. Testability has been an ad
hoc, manual effort, in which maintenance engineers at-
tempt to identify an efficient method of troubleshooting
for the given product, with no control over product de-
sign. However, poor fault observability in complex sys-

*Research supported in part by the Dept. of Economic Devel-
opment of the State of Connecticut under the Yankee Ingenuity
Initiative, Sikorky Aircraft and Qualtech Systems, Inc.

Fax (203)-486-2447

E-Mail: krishna@sol.uconn.edu

tems have driven up the life-cycle maintenance cost of
products to over 3—10 times that of the manufacturing
cost. Evidently, significant savings in the total cost of a
product can be achieved by improving the testability and
maintainability of products. Testability must be engi-
neered into the product at the design stage itself, so that
optimal compromise is achieved between system main-
tainability and performance. This process of refining a
system design to improve testability is termed Design for
Testability (DFT), and is now a requirement in most de-
fense projects. To maximize its impact, DFT must be
performed at all stages of the design — from schematics
— to design of subsystems — to system integration.

In this paper, we present a modeling methodology, and
a software tool implementing it, that is capable of per-
forming testability analysis of a system in every stage of
its design. We envision the use of the methodology in all
the stages of a product life cycle :

e In the concept phase of a design, the modeling tech-
nique enables a designer to perform system level
DFT analysis by using a hierarchical generalized de-
pendency model that is closely related to schemat-
ics. This step will also allow designers to allocate
testability resources to the various subsystems for
optimizing system testability.

e As subsystem designs become available, direct inter-
faces to the CAD/CAE databases (EDIF or VHDL
description of the subsystem) will enable verification
of the testability of individual subsystems.

e Using the hierarchical dependency model, a designer
can integrate the subsystem models into a hierarchi-
cal model of the complete system. The designer can
perform testability analysis of the system and deter-
mine if the testability goals are met.

e The analysis techniques identify enhancements that
can be incorporated into a design to improve the
testability of the system.

e The test sequencing algorithms generate near-
optimal fault isolation strategies for the system,
which can be used by maintenance personal in the
field. This ensures that the calculated testability
figures of merit for the system are indeed achieved.

New Design Design Changes <=—
Model Modeler DFT Changes
Integration
Analysis
\
Fault Test
Analysis Feedback Sequencing
Loop Analysis
v
Undetected Faults TFOMs
Ambiguity Sets Loop Identification pjagnostic Tree
Redundant Tests Loop Bresking Undetected Faults
Hidden Favits recommendations Ambiguity Sets I
Masking Sets Redundant tests
Test point placements
Design For Testability System Partitioning
Recommendations BIT recommendations

Figure 1: Designing completely testable systems using
TEAMS

TEAMS, Testability Engineering And Maintenance
System [1], is an X-windows based software tool, that
integrates the methodology and the algorithms in an
easy-to-use graphical user interface. TEAMS has been
used for testability analysis of large systems containing as
many as 50,000 faults and 45,000 test points. TEAMS
minimizes the life-cycle cost of a system by aiding the
system designer and test engineer in embedding testabil-
ity features, including “built-in-test” requirements, into
a system design; and by aiding the maintenance en-
gineer by developing near-optimal diagnostic strategies
(see Fig. 1). TEAMS is used to: (i) model individual
subsystems and integrate them into system models, (ii)
generate near-optimal diagnostic procedures for a vari-
ety of realistic options, and (iii) analyze and quantify
testability of systems and subsystems, visually pinpoint
the diagnostic inefficiencies of a system, and make rec-
ommendations towards the design of completely testable
systems.

The paper is organized as follows. In section 2,
we present the multi-signal directed graph modeling
methodology, which corresponds closely to hierarchical

system schematics. In section 3, we discuss the static

analysis algorithms that assess the inherent testability
of a system, pinpoint testability deficiencies and suggest
improvements, by analyzing the topology of the system.
This 1s followed in section 4 by the test sequencing al-
gorithms and extensions required in testing algorithms
to exploit the capabilities of multisignal models to meet
real-world demands of users.

2 Multisignal Modeling

2.1 Existing Modeling Approaches

A review of the literature suggests a spectrum of model-
ing approaches for diagnosing faults in complex systems:
quantitative (e.g., numerical simulation, ordinary differ-
ential equations), qualitative, structural and dependency
models (see Fig. 2).

Quantitative models require the complete specification
of system components, the state and observed variables
associated with each component, and the functional re-
lationships among the state variables [2]. However, the
precise information required by these models is typically
not available for complex systems and is prohibitively
expensive to obtain.

Qualitative models, or simplified quantitative models,
represent a physical system in terms of simple qualita-
tive algebraic constraints and/or qualitative differential
equations to simulate its qualitative behavior [4, 3]. Even
qualitative simulation i1s too expensive for large systems
(see Table 1). Both techniques require extensive model-
ing efforts and need information that 1s usually not avail-
able in the early stages of a design.

Structural models represent the connectivity and fail-
ure propagation direction in the form of a directed graph,
which corresponds closely to the schematic of the system.
Analysis based on structural models is simple and fast,
and, consequently, can be used for large systems. More-
over, there 1s a direct correspondence between the nodes
in a structural model and the modules of the real system,
making it easy to verify these models. However, structure
does not always imply function; typically, many complex
functional dependencies are embedded in simple block di-
agrams. Thus, analysis based on structure alone is crude,
and often leads to wrong diagnostic conclusions.

Dependency models represent the cause-effect relation-
ships in the form of a directed graph, and are the primary
modeling techniques employed in the current testability
analysis tools. It is also referred to as inference modeling
in the test community [5]. However, dependency mod-
els can deviate significantly from structure as more and
more complex dependencies are modeled.

A
Increasing Exact Simulation
Modeling /Qualitative Reasonin&
and . Dependency
Computational
Complexity_ | Structural

Figure 2: Spectrum of Modeling Approaches for System
Fault Diagnosis

2.2 Types of Failures

A failure is defined as any abnormal behavior of a compo-
nent or of a system. We classify failures into two distinct
categories :— functional failures and general failures. The
two different types of failures are best illustrated via a
simple example. Consider a lossless (passive) bandpass
filter consisting of an inductor and a capacitor. If a fault
in the inductor or capacitor causes a deviation in the
center frequency or the Q-factor, it is considered a func-
tional failure, i.e., a fault that affects the function it was
supposed to perform. On the other hand, if the fault is
a short-circuit that causes the output power to be zero
(i.e., a lossless filter causes a power-loss!), this is a general
failure, that is, a catastrophic failure affecting attributes
beyond 1ts normal functioning.

The four modeling techniques described in the preced-
ing subsection differ in the way they model these failures.
In qualitative and quantitative modeling techniques, the
functioning of a system i1s modeled in great detail. Thus,
they have excellent capabilities in isolating functional
failures. General failures are handled as special cases
of functional failures. However, since their reasoning is
based on simulating the real system, the reasoning pro-
cess 1s extremely slow and is unsuitable for large-scale
systems (see Table 1).

For diagnostic purposes, we only need to model how
a fault (or cause) propagates to the various monitoring
points. Thus, it is sufficient to model the system in its
failure space. In structural and dependency modeling,
the system i1s modeled in terms of first-order cause—effect
dependencies, i.e., how a faulty node affects its imme-
diate neighbors. Higher-order dependencies can be in-
ferred from first-order dependencies. Thus, dependency
modeling captures the minimum necessary information
for testability analysis and is the only technique that has
been applied to large-scale systems.

Modeling State Diagnostic

Technique Generation Strategy
Generation

Qualitative

Reasoning 1.5 hours 3.83 hours

(QRS)

Dependency || needs true value

Model simulator once. 22 seconds

(TEAMS) (~ 5 min.) (speedup = 62.7)

Table 1: Computational Requirements of Qualitative

Reasoning and Dependency Models (based on blade de-
ice system of a Helicopter with 58 components, 400 fail-
ure modes and 660 tests on a Sparc 10.)

Structural models equate the connectivity to depen-
dency. They model general failures only, totally ignoring
functional failures. Thus, if component A fails, it affects
all attributes of all components depending on i1t. This
obviously does not have to be true. Hence, structural
models are often called “worst case” models and have
poor diagnostic resolution.

Dependency modeling is a refinement on the structural
modeling approach, where failure modes are added in an
effort to model functional failures. In the filter example,
the failure modes could be “out of tolerance”, causing a
functional failure, and “short circuit”, causing a general
failure. However, the failure modes are modeled based
on user experience, expert input, or heuristic rules. Con-
sequently, they do not represent an accurate or complete
list of possible failure modes. These fatlure modes of de-
pendency modeling should not be confused with the fail-
ure types of multisignal modeling. The failure modes in
dependency models classify the physical faults, whereas
functional and general failures in multisignal model clas-
sify the effects on system functioning. Thus, instead of
enumerating the possible (range of) values of a resistor in
the event of a fault in the resistor, we identify its possible
effects on the function of the system. It may be tempting
to map open-circuit and short circuit to general failure,
and out-of-tolerance to functional failure, but this may
not always be truel.

The structural distortion in dependency models stems
from the mapping of a multi-dimensional attribute or
“signal” space of a physical system into a single dimen-
sional (dependency) space. Conceptually, the structural
model defines the paths along which nodes of the graph
affect each other (i.e., a potential multi-signal depen-
dency). Existing dependency modeling techniques as-

1In example 3, described later in section 2.5.3, a short-circuit in
R3 is a functional failure, affecting only the dc-offset of amplifier
Aq.

sume dependencies to be binary. Thus, dependencies in-
volving multiple signals are modeled as multiple single
dependencies, one for each signal, just as any integer can
be encoded as a string of binary digits. This is done by
replicating nodes for each signal dependency, and con-
sequently deviating from the structure. For example,
a simple resistor can be split into three failure modes
- open-circuit, short-circuit and out-of-tolerance. Since
this deviation stems from the judgement of the modeler
based on some local reasoning, such dependency mod-
els are subjective with limited validity. This limitation,
and the resultant validation problem, has rendered de-
pendency modeling into an art and cast aspersions on
the usefulness of the results. Test program developers,
who inherit these models from the modeler, are unable to
validate these models, and are either unwilling or unable
to use the results in developing test programs.

2.3 The Multisignal Dependency Model-
ing solution

It is evident from the preceding discussion that none of
the modeling techniques are adequate for accurate fault
diagnosis in large scale systems. In spite of the lim-
itations, these modeling techniques have been success-
fully applied, although at a steep price, to many defense
projects, to produce systems that are easy to maintain.
Structural modeling is easy, but lacks the required accu-
racy. Dependency modeling, in an effort to add the func-
tional failure information, also added structural distor-
tion, subjective user input and, consequently, immense
model validation problems. The other techniques require
highly knowledgeable expert user input. Naturally, these
techniques are not cost effective and are not applied, un-
less absolutely mandated (and paid for by some defense
contract)!

In the following, we propose a modeling approach that
lets a test engineer layer in the functional failure informa-
tion on a structural model in an intuitive, easy-to-follow
methodical way, without the quirks of dependency mod-
eling. Our proposed solution to the structural distortion
problem is to capture the signals (or attributes) modified
by each component, and the signals (or attributes) de-
tected by each test point. Formally, a multi-signal model
consists of:

e a finite set of components C' = {c¢y,¢a,...,cr} and a
set of independent signals S = {s1, 59, ..., sk} asso-
ciated with the system;

e a finite set of P available test points (or probe
points) TP = {TPy,TPsy,...,TPp};

¢ a finite set of n available tests T = {{y, 1, ...

e cach test point T'F, is associated with a set of tests,

SP(TP,);
e each component ¢; affects a set of signals SC(¢;),
e each test t; checks a subset of signals ST'(¢;), and

e the digraph DG = {C,TP,FE}, where E denotes
the set of directed edges specifying the structural
connectivity of the system.

Conceptually, a multi-signal dependency model is akin
to overlaying a set of (single-signal) dependency models
on the structural model, and, hence, the model corre-
sponds closely to the schematics of the system. Note that
the “signals” correspond to the independent units in the
system transfer function, or the distinct attributes that
constitute the functional specifications of a system. Con-
sequently, the number of possible signals is a small count-
able set and a failure in one signal, by definition of inde-
pendence, does not affect the other signals. Also, since
the models correspond closely to the structure, model
validation and integration of individual models into sys-
tem models is greatly simplified. This significantly en-
hances the job of the modeler.

Multisignal modeling has the benefit of capturing the
necessary useful and important knowledge about the
system for fault diagnosis without being bogged down
by unnecessary details (which drive up the model gen-
eration cost, as in exact simulation and/or qualitative
reasoning) and computationally expensive simulations
and/or reasoning techniques (which makes them imprac-
tical for large-scale systems applications). Furthermore,
this modeling approach does not require the explicit
knowledge of failure modes in a system. This means that
the modeling approach enables the detection and isola-
tion of unanticipated failure modes. Moreover, failure
modes and effects analysis can be performed by speci-
fying the signal-failure mode association for each com-
ponent, if necessary. This approach thus models all the
information captured by dependency models, without the
added complexity of failure modes and structural distor-
tions.

Multisignal dependency modeling technique represents
the system in the failure space. Hence, only the nature of
dependency (i.e., the signal) needs to be modeled. This
is in contrast to qualitative and quantitative modeling
schemes, which require costly simulations and state gen-
eration. Furthermore, for troubleshooting purposes, it
1s unnecessary to model the exact quantitative relation-
ships. In order to illustrate the assertion, consider a cas-
cade of four amplifiers, having gains of 2,3, 4 and 5, with
an overall gain of 120. If, due to a fault, the new gain
is 60, the first stage, with a design gain of 2, should not

necessarily be implicated; the gain of any of the stages
may have been reduced due to a functional failure. Thus,
when the same attribute is modified by multiple com-
ponents, quantitative relationships convey little, if any,
information. For the same reason, signals should not be
abused to define two signals, such as “voltage high” and
“voltage low”, in an effort to obtain higher diagnostic
resolution. It is imperative that the signals be the basic
independent variables that describe a system, and not be
directly derivable from each other.

2.4 Three step guide to multisignal mod-
eling

In the following, we provide a three-step procedure for
multisignal modeling that should be adequate for most
modeling needs :

1. Enter the structural model, schematic model or a
conceptual block diagram. In TEAMS the struc-
tural model can be automatically generated from
VHDL structural models, EDIF netlists, or directly
entered via the graphical user interface.

2. Add signals to the modules and test points. The
set of signals can be identified from the functional
specification or from the independent variables in
the transfer function. For example, the signal speci-
fication of a power amplifier will include output dis-
tortion, harmonic distortion and power output. In
general, any unique attribute will have an associ-
ated signal. For example, in a bus with multiple in-
dependently addressable devices attached to it, the
address of each device will serve as a signal (see ex-
ample 1 in section 2.5.1).

3. Update model for special situations. In the follow-
ing, we identify a few special situations (not neces-
sarily exhaustive), and the corrections necessary for
them. All these correction mechanisms are available
in TEAMS.

o If a system has built in redundancy, (e.g., both
A and B must fail for a system to fail), configure
the redundant components using AND nodes.

e If a system has different modes of operation,
use special purpose nodes called SWITCHes,
to model them.

e If a system has components with built-in-self-
test (BIST), enable BIST in property options
of the component in the TEAMS model. Note
that BIST can also be modeled via unique sig-
nal names. A BIST spanning multiple com-
ponents is also called a “component test” in

dependency modeling; it can be modeled via a
unique signal.

e If a system has replaceable digital integrated
circuits, model them with their equivalent mod-
els. The equivalent models [6] are simplified
models of chips that capture the necessary de-
pendency information to detect faults in (but
not isolate faults within) a chip.

e In rare cases, a system may have dependencies
that cancel out. This is equivalent to “DON‘T
CARE” conditions in digital circuits. These
dependencies must be identified and removed.

2.5 Multisignal Modeling Examples

In the following, we illustrate the multisignal modeling
concepts using three examples. Each component has two
types of failure — general and functional. General fail-
ures are explicitly modeled by signal G. The functional
failures are mapped to the set of affected signals.

2.5.1 Example 1: A simple bus system

This example illustrates how multisignal modeling helps
preserve the relationship to original system topology.
Consider a simple bi-directional (SCST) bus system, with
a controller and five independently addressable devices
connected to it (Fig. 3). In normal mode of operation,
the controller activates one device at a time, and transfers
data to and from the device? independent of the other de-
vices on the bus. Thus, the bus acts as a point-to-point
link between the controller and each of the devices. This
i1s modeled by creating a signal for each unique device ad-
dress, and attaching it to the respective devices. Thus, if
there are errors only while the controller is communicat-
ing with device A, the suspected components would be
device A and the controller itself. This is equivalent to
a functional failure in signal A. However, if the cabling
and/or termination is improper, or any of the devices fail
and “hang” the bus (a general failure), all communica-
tions will fail! Indeed, this is a tricky system to model us-
ing traditional (single-signal) dependency model, because
the dependencies are point-to-point for functional fail-
ures, but all-to-all for general failures. Table 2 presents
the binary dependency matrix (where 1 denotes a cause-
effect relationship) for this system.

2To test a device, the controller would send specific com-
mands to the device and compare the received data to known true
responses.

D
E G G C G
A A A
A,B,C,D,He Y Y Y
Controller B
‘Bus
i S—
B
A G G

Figure 3: Simple Multisignal Model of a bus system

Possible Failure in device test
Cause(s) A|B|C|D|E|
Controller (G) || 1 | 1 | 1] 1 1
Controller (F) 1 ({1111 1
Bus (G) T 11|11
Device A (G) 1111 1
Device A (F) 110[0]0 0
Device B (G) 1111 1
Device B (F) 01010 0
Device C (G) 1111 1
Device C (F) 0|0]11]0 0
Device D (G) 1111 1
Device D (F) 0101011 0
Device E (G) 1111 1
Device E (F) 010010 1

Table 2: The Dependency Matrix for the bus system
example

2.5.2 Example 2: A Cassette Player

This example illustrates how multisignal modeling can
be used to increase the diagnostic resolution by adding
signal attributes on a structural model. Consider a cas-
sette player, consisting of power-supply, tape head, pre-
amplifier, power-amplifier and a three-way speaker sys-
tem. It is assumed that there are no internal test points
in the system, and, hence, its performance can only be
monitored at its outputs, i.e., by listening to the sound
from the three-way speaker, and by looking at the Power
ON LED. A multi-signal model for the cassette player
system 1s shown in Fig. 4, where the signals sy, s2, s3,
s4, and s5 correspond to Treble, Bass, Midrange, signal
to noise ratio (SNR) at 1 Watt nominal output, and har-
monic distortion at rated power, respectively. As before,
each component is associated with a list of signals that
it affects (including “G” for general failure). The output
music and power-on LED (the test points) are associated
with a list of signals that they monitor. Further, assume

Power LED Light
Supply > >
G G
Woofer
O
52 aG 52,85
Eapcel {Pre—amr_\ Power Midrange
ca amp >
51,54’(}_’ a "54’55,(} 53,G C)Sg
Tweeter
O
51,G 81, 84

Figure 4: Simple Multisignal Dependency Model of a
Cassette Player System

that we attach special instruments to measure SNR (s4)
to the tweeter output and a distortion meter that checks
s5 to the woofer. In addition, the base (s1), treble (s3)
and midrange (s3) are monitored at the respective speak-
ers. Table 3 presents a binary matrix that captures the
overall cause-effect or dependency matrix for this system.

Tweeter | Woofer | Mid. | Light

51 | 54 52 | 55 53
Power (G) 1 1 1] 1 1 1
LED (G) 0 0 010 0 1
Tape Head (G) 1 1 1] 1 1 0
Tape Head (F) 1 1 010 0 0
Pre-amp (QG) 1 1 1] 1 1 0
Power-amp (G) || 1 1 1] 1 1 0
Power-amp (F) || 0 1 01 0 0
Woofer (G) 0 0 1] 1 0 0
Woofer (F) 0 0 110 0 0
Midrange (G) 0 0 010 1 0
Midrange (F) 0 0 010 1 0
Tweeter (G) 1 1 010 0 0
Tweeter (F) 1 0 010 0 0

Table 3: The Dependency Matrix for the Cassette player
example

2.5.3 Example 3: An Amplifier/Filter System

In this example, we present the multisignal model of an
amplifier/filter system. This example was solved using
(single-signal) dependency modeling in [7, 8]. Here, we
present the equivalent multisignal model for it. The cir-
cuit consists of an amplifier (of gain 2), followed by an

RC low pass filter (f.=1 khz) and a buffer. Thus, the
signals associated with the amplifier are s; (gain), s2
(linearity), sy (slew rate) and ss (d.c. offset). The fil-
ter is associated with signal s3 (cut off frequency). Fig-
ure 5 presents the schematic of the circuit overlayed with
the appropriate signals. For example, the first stage will
have a d.c. offset if (Ry || R2) # Rs. Hence, Ry, R
and Rj affect signal s5. Similarly, R4 and (4 affect s3,
and the gain of the first stage of the amplifier is affected
by (R2/R1) and the open loop gain of the op-amp. The
system has test points Py, TPy, TPy, TP and J;. The
tests associated with TPy could be as follows :— apply
a known input (1V r.m.s. 1 KHz sine wave) at P; and
(a) measure d.c. voltage (check ss), (b) measure the ra-
tio of a.c. voltages at TPy and known input P; (check
s1) and (¢) measure the harmonic distortion (check sz).
The slew-rate can be tested by applying high-frequency,
high-amplitude sine-waves and observe the slope of the
sine-wave at zero-crossings (check s4). The same set of
measurements could be performed at TP, and J;. For
the sake of simplicity, let us assume that we only check
for s3 at TPy, i.e., measure the ratio of voltages at T Ps
and TPy for different frequencies. The dependency ma-
trix for this example is presented in Table 4.

A key advantage of the multisignal modeling approach
is that the model is independent of the tests associated
with the test points. For example, the model does not
have to be changed, even if none of the tests check slew-
rate s4. Even more remarkably, if a new design specifi-
cation is added, say the gain-bandwidth product of the
amplifier, 1t is sufficient to attach a new signal to the
components affecting it (i.e., op-amps) and the test point
monitoring it. This is in sharp contrast to the approach
in [7], where the tests and the corresponding component
dependencies are identified first and then a (single-signal)
dependency model is derived [7, 8]. Modeling a system
based on predefined tests, and then using it to improve
testability is akin to the classic chicken and egg problem!

P R J1

{s3} |

{51a52a54a55}671 -

55} fea

{51a52a54a55}

Rs

Figure 5: Multisignal Dependency model of an Ampli-
fier/filter

TPy TPy J1
51|52|54|55 53 51|52|54|55|
R (G)] 1 1 1 1 1 1 1 1 1
RRE [1]loJo[1] o [1]o]o]T1
R (G) | 1 1 1 1 1 1 1 1 1
Ro(E)|[1T[oJo 1] 0 [1T]0]o0o]T1
Rs; (G) | 1 1 1 1 1 1 1 1 1
Rs(Ey[oloJo|1T] o JolJo|o]|1
A (G) | 1 1 1 1 1 1 1 1 1
A (F) 1 1 1 1 0 1 1 1 1
Ry JoloJolo] 1 [1]1]1]1
Re(Fy[ololo|o] 1 JoJo]o]o
Ci(G) | O 0 0 0 1 1 1 1 1
G [ofloflolo] 1 JoJo]o]o
A2 (G) | O 0 0 0 0 1 1 1 1
As (F) 0 0 0 0 0 1 1 1 1

Table 4: The Dependency Matrix of the Amplifier /Filter
example

2.6 Hierarchical Multisignal Modeling in
TEAMS

A hierarchical multisignal dependency (similar to di-
graph, or information flow) graph captures the first-
order cause-effect relationships between modules and test
points. Modules may have (sub)modules (i.e., an em-
bedded dependency subgraph) or be a submodule of a
larger system. The lowest level (sub)modules are also
called components. Thus, a system can have multiple
levels of hierarchy. The modules are the failure sources,
or the causes. A test node denotes a monitoring point,
where the effects are observable. A link between two
nodes A and B denotes that A affects B, or B depends
on A. Higher-order dependencies can be inferred from
these first-order dependencies. The redundancy for fault-
tolerance, which may hide the failure of a component, 1s
modeled as an AND node. An AND node with M-out-
of-N redundancy indicates that at least M of its inputs
must fail for the output of the AND node to fail. Switches
model the various modes of system operation. In addi-
tion, they can be used to functionally isolate modules or
break feedback loops in test mode to improve the testa-
bility of a system.

2.7 Node descriptions in the digraph
model

The input requirements of the various nodes of the di-
graph are as follows:

1. Module node:
by: module name, number of inputs (I;), num-
ber of outputs (0;), the set of signals it affects
(5C(¢;)), Mean-time-to-failure (MTTF;) or failure
rate A; (measured in number of failures per 1,1000,
1 million or 1 billion hours), repair and rectifica-
tion times and costs. Modules with built-in-self-test
(BIST) are represented by a special node to denote
that BIST detects a fault within the module only.
The repair times/costs are in any consistent units
(e.g., costs in dollars, time in hours) selected by the
user.

Each module node ¢ 1s characterized

2. Test node: Fach test point p has the following prop-
erties: test name, the set of tests associated with it,
the set of signals detected by each test (ST'(¢;)), test
costs, test times, precedence constraints, resource re-
quirements, setup operations required, probabilities
of detection and false alarm, and whether the test is
enabled or disabled. The test times/costs are in any
consistent units (e.g., costs in dollars, time in hours)
selected by the user.

3. AND node: TEAMS offers a continuously variable
voting logic (= VL%) for the AND nodes. This al-
lows the modeling of any M-out-of-N logic, where
M = [VL* N/100]* and [z]* denotes the smallest
integer greater than or equal to #. The reconfigu-
ration reaction time can be instantaneous (= zero
delay) or finite.

4. Switch node: A switch node is characterized by the
orientation of the switch. It enables the modeling of
system modes and the breaking of feedback loops in
testability mode.

5. Links: Links can be marked breakable or unbreak-
able for loop breaking recommendations from feed-
back loop analysis.

2.8 The Dependency Matrix

The directed graph model captures the first order cause-
effect dependencies such as A affects B and B affects C.
The global dependencies, such as A affects C, are inferred
by the reachability analysis algorithms. Specifically, we
need to ascertain which of the failure sources can be ob-
served from each of the tests of the test points, thus en-
abling us to compute the dependency or fault dictionary
matrix, similar to the ones presented in Tables 2—4.

A key requirement in multi-signal modeling is that the
component be the smallest functionally distinct entity.
This requirement relates the level of details that should
be specified in a model to the diagnostic resolution that

can be achieved by it. Components can still be of diverse
complexity. In example 3, resistor R is a component?
whereas, in the bus system example, each device and the
controller in the bus system is modeled as a component,
even though it may consist of hundreds of transistors.
The bus system example is a conceptual or macro view of
the system where only (failures in) the controller-device
communication were modeled. Consequently, the diag-
nostic resolution is coarse.* To sum up, if a component
fails, it affects all the signals associated with it. Con-
versely, if any of the signals affected by the component
is good, the component is fault-free®.

It is therefore sufficient to decompose each component
into only two aspects, the general failure and the func-
tional failure. Similarly, a test point may have multiple
tests associated with it. In this case, if there are L com-
ponents, L of which have functional failures, and n tests,
the dependency matrix (D-matrix) is of size (L4 Ly) x n,
where d;,; = 1, if there is a path from component ¢; to
test ¢; (dependency for general failure in component ¢)
and d;,; = 1,if di; = 1 and SC(c;) N ST(t;) # 0. The
D-matrix summarizes the diagnostic information of the
system and all analysis is performed using this matrix.

In order to find the reachability of test points from a
given module, tokens are propagated from the module
via the digraph’s links to determine which other nodes
are affected. When a token reaches a module, test, or a
switch, copies of it are propagated to appropriate outputs
of the node and to the links connected to them. The out-
put of an AND node specifying M-out-of-N redundancy
is not propagated until at least M tokens are received by
it. To prevent the algorithm from entering an infinite
loop when a cycle is encountered, tokens are not repli-
cated nor propagated if a node has already been reached
by another token. The algorithm terminates when to-
kens cannot be propagated to any new nodes. The signal
information is then used to derive the multisignal de-
pendencies, d;,;, for each test point monitoring multiple
signals and each component with functional failure. This
algorithm takes O(F) operations (F = number of links
in the graph) to find the reachability of test points from
a given module. The procedure is repeated for all mod-
ules; thus, the worst-case complexity of our algorithm is
O(EL), where L is the number of components.

3If Ry fails functionally, both s1 and ss must be affected, since
both are functions of R».

4One could also break up of the
(sub)components — bus-driver and disk-subsystem, and achieve
higher diagnostic resolution - such as communication error and

each devices into

media error.

5Tf the multi-fault algorithm, presented in section 4 is used, this
requirement can be relaxed by assuming each signal can fail individ-
ually. This allows for more flexibility in modeling partially defined
systems, where the component information is not yet available.

3 Static Fault Analysis

Static fault analysis techniques are used as a rapid means
to assess the inherent testability of a system. It identi-
fies undetectable faults, ambiguity groups, and redun-
dant tests. An ambiguity set of faults corresponds to
a set of identical rows in the D-matrix. Since they all
have the same failure signature, the failure sources can-
not be isolated within an ambiguity group. Similarly,
redundant test sets identify tests that have identical di-
agnostic information, i.e, sets of identical columns in the
D-matrix. In addition, Feedback loop analysis identifies
the topological testability limitations of the system and
makes DFT recommendations to overcome them, while
hidden and masking false failure analysis sets the stage
to troubleshoot systems with possibly multiple failures.

3.1 Feedback loop analysis

A system is said to have feedback loops in the sense of
diagnosability, whenever there is a circular flow of diag-
nostic information feeding back onto itself. When we an-
alyze dependency (information flow) models, topological
circularities most often correlate with physical feedback
loops. Unless these cycles are broken (by placing tri-
state buffers that block the feedback of diagnostic infor-
mation), additional tests will not improve the testability
of a system.

Our approach to identify the feedback loops is to de-
compose the graph model of a system into its strongly
connected components. A strongly connected component
(SCCQC) is defined as the set of nodes in the directed graph
in which there 1s a path from every node to every other
node. Hence, the only nodes that appear in a cycle are
those which are part of a strongly connected component.
We identify the strongly connected components of a sys-
tem graph using an algorithm due to Tarjan [9] which
takes O(FE) operations, where E is the number of arcs
in the system graph. In the parlance of testability anal-
ysis, the strongly connected components of the system
graph are termed “gross feedback loops”. Every gross
feedback loop in the directed system graph represents an
ambiguity group of components which cannot be diagnos-
tically resolved by inserting any number of test points.
Hence, it is necessary to place tri-state buffers within a
strongly connected component to prevent the informa-
tion feedback. This problem is equivalent to determining
the minimal set of links which need to be removed in
order to break the strong connectivity.

We adopt the following heuristic approach that works
directly on the SCC without having to enumerate all the
elementary cycles in it. Consider a link (v, w) belonging
to an SCC, where v 18 the start-node of the link and w

is the end-node. We define a Figure Of Merit (FOM) for
this link as: FOM = indegree(v) x outdegree(w). Thus,
FOM(v, w) represents the minimum number of cycles in
which the link (v, w) appears. Hence, FOM(v, w) is in-
dicative of the number of cycles that will be broken when
link (v, w) is removed. Given a strongly connected com-
ponent, we break the link that maximizes the above Fig-
ure of Merit and recompute the SCCs of the resulting
subgraph. This process is repeated until the strong con-
nectivity is completely broken. The broken links mark
the potential locations of the tri-state buffers.

3.2 Hidden and masking false failures
analysis

Most traditional testability analysis algorithms make the
simplifying assumption that there is at most one fault in
the system. However, this assumption may not hold for
large systems involved in a prolonged mission with no
opportunity for repair during the mission. In such cases,
diagnosis based on single-fault assumption can produce
wrong inferences under certain conditions. For example,
we need to analyze a system for potential hidden fail-
ures, 1.e., the set of failures that get masked by another
failure. The diagnostic procedure must check for these
additional failures when the single fault assumption is
not valid. Another important problem in analyzing mul-
tiple failures is the potential for masking false failures. A
masking false failure occurs when the symptoms of two or
more failures add up to mimic the failure of an unrelated
element. The diagnostic procedure based on single fault
assumption will replace the implicated failure source and
obviously fail to repair the system. Hence, identifying
the hidden faults and masking false failures would help
the maintenance technician in adapting the single fault
diagnostic procedures to multiple failure situations.

The problem of identifying the sets of hidden failures
is relatively easy to solve. The binary fault-test matrix,
D = [dy;], consists of failure aspects A = (ao, a1, ..., am)
as row indices and tests T = ({1,%2,...,y) as column
indices®. Thus, the element dj; = 1 denotes that the
failure aspect a; is detected by test ¢;. Therefore, each
row in the D-matrix corresponds to a failure aspect and
its observability with respect to the available tests. The
set of hidden failures H; for the failure aspect a; is given
by, H = {j|l1 < j <m,j # ,D;UD; = D}, where
D; denotes the I-th row of the D-matrix, m is the total
number of failure aspects, and U denotes the logical OR,
operation.

In contrast, the problem of enumerating the masking
false failure sets for a given fault is computationally ex-

8Here, ag is a dummy failure aspect that represents the fault-free
condition

pensive. Typically, it requires O(2™n) operations, which
is impractical for even moderate values of m. Hence, in
the following, we develop a new approach for enumerat-
ing only the “irreducible subsets”. We define an “irre-
ducible set” as a set of rows which when logically OR-ed
would produce the row corresponding to the fault under
consideration and excluding any one of the rows in this
set would produce a different row pattern. This subset
is irreducible in the sense that each member row of the
set 1s indispensable for the set to qualify as a masking
false failure set. Enumerating these is enough, since ev-
ery other masking false failure set is a superset of the
irreducible subsets.

This problem is related to one of determining the
minimal hitting sets discussed in [10, 11]. TLet nj be
the number of 1’s in the reference row Dy, and Hj be
the set of hidden faults for the reference row Dj. Let
Io = {j : dp; = 1} represent the set of columns in
the reference row that contain 1’s. Define a function
m: {l,...,np} — I that maps the set of nj contigu-
ous integers onto the set Ip. Further, define the sets
Ly ={l:1€ Hy,dp(jy = 1}(1 < j < ng), where Lj rep-
resents the subset of hidden rows for the reference row
that have a 1 in the /m(j)-th column position. Given the
sets L; (1 < j < ng), it is clear that a set R is a masking
set if R C (J]5,L;, such that RN L; # ¢(1 < j < i),
where ¢ is a null-set. If R is an irreducible masking set,
then no proper subset of it satisfies the above criterion.
Thus, once we determine the sets {L; }(1 < j < n) for a
given row k, we can use Reiter’s algorithm [10, 11] to find
all the irreducible masking subsets for the failure aspect
ar.

4 Test Sequencing Algorithms

The test sequencing problem, in its simplest form, con-
sists of:

1. a set of failure aspects A = (ag,a1,...,an) associ-
ated with the system, where a;(1 <[< m) denotes
one of the m potential failure aspects in the system,
and ap 1s a dummy failure aspect denoting fault-free

condition;

2. the conditional probability vector of the failure as-
pects P = [p(ag)p(ay) . ..p(an)]¥; 7

3. aset of n available tests T = (¢1,%2,...,t,) with an

application cost vector B = [by, bs, ..., b,]T where b;
denotes the usage cost of test ¢; measured in terms

"These are conditional probabilities computed from a priori
probabilities of failure aspects [pl,pQ,...,pm]T based on single
fault assumption [14].

10

of time, manpower requirements, or other economic

factors,

4. a vector of repair costs of the failure aspects F' =
[flafZa .. 'afm]a

5. a diagnostic dictionary matrix D = [dj;], where dj;

is 1 if test ¢; detects a failure aspects a; and 0 oth-
erwise.

The problem is to devise a sequential testing strategy
(in the form of a binary decision tree) such that the ex-
pected testing cost (i.e., diagnostic cost) defined by

m [P

J= Z prl[j] + fi ¢ plar) (1)

where P; denotes the ordered set of indices representing
the sequence of tests applied to isolate the failure aspect
a; (the optimization is over P, the class of all such ad-
missible ordered sets), Pi[j] is the j-th element of the
sequence Py, and |Py] is the cardinality of the sequence
Pr.

This problem belongs to the class of binary identifi-
cation problems that arise in medical diagnosis, nuclear
power plant control, pattern recognition, and computer-
ized banking [12]. The optimal algorithms for this prob-
lem are based on dynamic programming (DP) [13] and
AND/OR graph search procedures. The DP technique
is a recursive algorithm that constructs the optimal de-
cision tree from the leaves up by identifying successively
larger subtrees until the optimal tree rooted at the ini-
tial node of complete ambiguity is generated. The DP
technique has storage and computational requirements
of O(3") for the basic test sequencing problem.

4.1 Top-down search algorithms

The AND/OR graph search algorithms presented in [12]
are top-down algorithms that replace the optimal cost-
to-go by an easily computable estimate of the optimal
cost-to-go. A novel feature of this approach is that the
estimate (termed as the Heuristic Evaluation Function
(HEF)) is derived from Huffman coding and entropy.
These information theoretic lower bounds ensure that an
optimal solution is found using the AO*, HS, and CTF
search algorithms. In addition, the top-down nature of
the AND/OR graph search algorithms have enabled us to
derive several near-optimal search algorithms that pro-
vide a trade-off between optimality and computational
complexity. In the following, we present brief descrip-
tions of each of these algorithms.

4.1.1 AO? algorithm

The algorithm AO? is similar to AO™ except that the
search space is reduced substantially by incorporating a
higher threshold than necessary for selecting a new path
in the AND/OR graph for expansion. A nice feature of
this algorithm is that, it is an e-optimal algorithm, i.e.,
guarantees that the solution found does not exceed the
optimal cost by a factor 1+ ¢ (¢ > 0).

4.1.2 Limited search AO*

AO" retains all admissible tests at every OR node of
ambiguity for further examination until the OR-node is
solved, 1.e., an optimal solution tree i1s found starting
from that ambiguity set. In order to overcome the com-
putational explosion of AO* while solving large problems,
limited (breadth) search AO™ retains only M BEST best
tests at each OR-node, where M BEST is a user speci-
fied parameter. The M BEST best tests are selected by
ranking the tests on the basis of their information gain
per unit cost [12].

4.1.3 Multi-step information heuristics

AO* near-optimal variants are essentially
breadth-first strategies. An alternative is to select the
next best test based on a limited lookahead by a depth-
first expansion of the decision tree from an OR node of
ambiguity. A simple MSTEP lookahead greedy heuristic
algorithm for the selection of a test at a given ambiguity
node x can be devised as follows. For each test ; from
the set of available tests at the reference ambiguity set,
the left /right children are computed for the pass/fail out-
comes. For each child, the best possible test is selected
based on the single step information heuristic and the
OR node is split further into its left /right children corre-
sponding to the pass/fail outcomes. The above computa-
tion is repeated for each child recursively until the depth
of the search tree reaches MSTEP. The information gain
per unit cost of the search tree is then computed, and
the test that maximizes this figure of merit is selected
for splitting the reference ambiguity set. Fig. 6 shows
the computational performance of various test sequenc-
ing algorithms for realistic problems of varying sizes.

and 1its

4.1.4 Minimax optimization

In all of the above algorithms, the cost criterion to be
minimized is the expected testing cost. Minimization of
expected cost can sometimes result in inordinately ex-
pensive sequences of tests to isolate faults of very low
probability of occurrence. This may not be acceptable
since the estimates of the MTTFs of the components are

11

=
o

p
o»—A
T

AO*
MBEST=1

_ /

MBEST=4
,

N
o,

Time taken to generate diagnostic strategy (in secs)
5
N

=
o,
s

10° 10° 10
Problem Size(mn)

10"

=
o

10

Figure 6: Computational complexity of various algo-
rithms on a Sun Sparcl0 (m=number of failure sources,
n=number of tests)

often inaccurate. In these cases, the dependence of the
cost function on the underlying probability distribution
can result in diagnostic strategies that are not really op-
timal. Minimax (minimizing the maximum testing cost)
is a criterion that results in robust diagnostic strategies.
We can extend the AQ™ algorithm to perform minimax
optimization by modifying the HEF h(x) used in [12].
The HEF for the minimax criterion does not depend on
the probability distribution of the failure sources over the
ambiguity group . Our experiments with this criterion
have resulted in robust diagnostic trees that are well-
balanced and near-optimal, even in the sense of expected
cost.

4.2 Extensions to generalized testing
with practical features

4.2.1 Multiple fault isolation

As discussed in Section 3.2, in many of the real world sit-
uations, the single fault assumption does not hold. In sec-
tion 2.8, we also noted that it is necessary to have a multi-
fault algorithm to analyze (incomplete) models that are
not defined down to component level, and, hence, one or
more signals associated with the lowest level module may
fail individually. Even though static analysis provides a
means to deal with multiple faults, there is a need for de-
veloping dynamic diagnostic strategies to isolate multiple
faults that may be present in a system. Earlier research
[14] produced a set of multi-fault algorithms based on
enumeration of possible multi-failure combinations using
the compact set notation. However, they are not suit-
able for problems with more than 600 aspects [14]. In
the following, we outline a multi-fault test sequencing

algorithm suitable for the solution of larger problems.

Let TS; = {a;|d;; = 1} be the set of faults covered
by test ¢;, T'A be the set of available tests, P be the
set of known good components and S = P be the set of
suspected faulty components. Further, let X = T'S; NS,
be the set of suspected failure aspects covered by test ¢;.
The probability that test ¢; passes is the probability that
none of the failure aspects in X is faulty. This probability
is given by Pr(t; = pass) = 1 — Pr(X) = [[;cx (1 — pi),
where p; 1s the unconditional apriori probability of aspect
a;. If test ¢; passes, we update the set of known good
aspects as P = PUX. Moreover, if |[X| = 1, and test
t; fails, aspect X is definitely faulty. This is known as
the one-for-sure condition [14]. Otherwise, if |X| > 1
and the test fails, no update on P and S is possible.
Therefore, a measure of information content of test ¢;
is%, 1C; = (u(|X| — 1) Pr(X) — 1)(pu log pr + po log po),
where, p1 = (Pr(X)/Pr(S)), p2 = 1 — p1, and u(x) is a
unit step function.

The algorithm then proceeds as follows. Initially, P =
{ap} and S = {ay,as,...,a;,m}. The test, ¢;, with the
highest information content is applied. If it passes, P
and S are updated as follows : P = P U {TS, N S},
S = P. The next best test (selected from the remaining
set of tests) is then applied. After every update of P, the
one-for-sure condition is checked. If for any test ¢; that
failed previously, |T°'S; N S| = 1, then aspect T'S; NS is
replaced and added to set P, and any previously failed
tests with non-zero information content, that covered the
repaired aspect, is added to the list of available tests. The
process is continued until P = @, or none of the available
tests have non-zero information gain. In the latter case,
if P # 0, P is the ambiguity group, and the diagnostic
process terminates.

4.2.2 Modular diagnosis

In order to improve the availability of a system, it 1s often
sufficient to isolate the failure source to a module. An
optimized test sequence which attempts to isolate mod-
ules instead of individual failure aspects is important for
field maintenance. The broad outline of the strategy for
modular diagnosis is the same as that for diagnosis to as-
pect level. The structure of the decision tree is the same,
but each of the OR-nodes in the decision tree represents
an ambiguity set of modules. Also, the conditional prob-
ability distribution of the modules in the ambiguity node
z 1s state-dependent. With these modifications, the test
sequencing algorithms described in the previous sections
can be easily extended to modular diagnosis.

8 Other measures of the information content are currently under
investigation

4.2.3 Precedence constraints and setup opera-
tions

The basic test sequencing algorithms can be extended to
include practical features such as precedence constraints
and setup operations for tests. In many practical sys-
tems, some tests (e.g., power on, safety tests) must pre-
cede others. Also, in many systems, tests have setup
operations, some of which may be common among mul-
tiple tests. Formally, we denote precedence constraints
via a mapping v : {¢;} — {T7},(1 < j < n) and TJP cT.
That is, for each test ¢;, T; which is a subset of 7" not
containing t; is the set of precedence constraints. De-
noting the set of setup operations as 7' = {{1, 1, ..., f];},
the dependence of the tests on the setup operations is
described by the mapping ¢ : {t;} — {T]}, (1<ji<n
and T] C T. That is, for each test t;, Tj, which is a
subset of T, 1s the set of setup operations. Further let by,
denote the cost of k-th setup operation.

The problem is to devise a sequential strategy such
that the expected diagnostic cost

m [P1]
J=3"S A+ b+ > bk gppla) (2)
=0 j=1 1Pyl 4

ke T, 151

i=1
1s minimized, with the precedence constraints

T8, C (PP, PL— 1< < [P (3)
AO™ and its variants need to be modified in the following
ways in order to incorporate the precedence constraints
and setup operations.

1. Since the test costs are state-dependent due to the
commonalities of setup operations, the estimate of
the cost-to-go at a given ambiguity node z in the
tree 1s a function of the tests used so far.

2. The set of admissible tests at a given node should
not include those tests (even though they split the
ambiguity set) whose precedence constraints are not
satisfied, 1.e., the set of admissible tests 1s also state-
dependent.

3. If the only information yielding tests at a given node
are those whose precedence restrictions are not sat-
isfied, then they should be considered as admissible
with their cost incremented by the costs of the un-
applied precedence tests.

4.2.4 Rectification

The algorithms considered so far attempt to isolate the
fault to the lowest level component/modules with the

available tests and then effectuate its repair. If availabil-
ity of the system is the prime consideration, rectification
of failure sources can be a superior alternative. Recti-
fication, as opposed to repair, is the replacement of a
potentially faulty component/module without prior di-
agnosis. Rectification often leads to quicker diagnosis of
the most likely failure sources at the expense of increased
cost due to replacement of components/modules. Rectifi-
cation can be modeled as additional “pseudo” tests which
detect faults in a module with cost equal to the rectifica-
tion cost of the component/module. That is, rectification
amounts to having an additional column in the test ma-
trix which has all zeros except for the rows corresponding
to the rectified faults.

5 Conclusion

In this paper, we present a novel, intuitive and flexi-
ble modeling methodology and provided a brief overview
of the TEAMS software package that uses it for auto-
matic test sequencing and testability analysis of complex
hierarchically-described modular systems. The multisig-
nal modeling methodology enables the modeler to add
functional failure information on a structural model via
signals. Thus, high diagnostic resolution can be achieved
without the complexity of qualitative and quantitative
modeling or the structural distortion of dependency mod-
eling. This,in turn simplifies the task of model validation.
We expect that the concomitant reduction in modeling
and model validation cost makes DFT cost effective for
commercial applications, as well. Multisignals also en-
able us to model advanced testability features, such as
multiple tests on a test point, test suites and compo-
nent tests, without deviating from structure. In addi-
tion, the ability of TEAMS to import equivalent di-
agnostic models of modules from other sources (VHDL
structural models, EDIF, Failure Environment Analysis
Technique (FEAT), etc.), allows for the seamless inte-
gration of models of subsystems. The test sequencing
algorithms of TEAMS can handle real-world features
such as rectification, modular diagnosis, precedence re-
strictions, setup operations for tests, imperfect tests, and
multiple fault isolation.

References

[1] Pattipati, K., Raghavan, V., Shakeri, M., Deb, S.,
and Shrestha, R., “TEAMS: Testability Engineering
and Maintenance System” Invited paper, 1994 IEEE
ACC, Baltimore, Maryland, pp. 1989-1996.

13

[2] Isermann, R., “Process Fault Detection Based on
Modeling and Estimation Methods - A Survey, ” Au-
tomatica, 1984, pp. 387-404.

Kuipers, B., ¢ Qualitative simulation: Then and
Now,” Artificial Intelligence, Vol. 59, 1993, pp.133-
140.

Kuipers, B., “ Qualitative Reasoning: Modeling and
Simulation with Incomplete Knowledge, ”Interna-
tional Federation of Automatic Control 1989, pp.571-
585.

Proposed TEEE - AIESTATE specification P1232,
Draft 1.2, October 1992.

Chreim, Samir., Aggregate Models of Digital Systems
for System Level Testability Analysis, M.S. Thesis,
Dept. of Electrical and Systems Engineering, Univ.
of Connecticut, Storrs, CT 06269-3157.

Dill, H.H., “Test Program Sets — A new approach,”
1990 IEEE Autotestcon, San Antonio, Texas.

“Weapon System Testability Analyzer (WSTA) -
Introductory level training”, IDSS software support
activity, Test Systems Engineering and Technology
Branch, NUWC, Newport, RI, June 1993.

[9] Tarjan, R., “Depth-First Search and Linear Graph
Algorithms,” STAM J. Comput., Vol. 1, No. 2, June

1972.

[10] Reiter, R., “A Theory of Diagnosis from First Prin-
ciples,” Artificial Intelligence, Vol. 32, 1987, pp.57-
95.

[11] Greiner, R., Smith, B. A., and Wilkerson, R. W.,
“A Correction to the Algorithm in Reiter’s Theory of
Diagnosis,” Artificial Intelligence, Vol. 41, 1989/90,
pp.79-88.

[12] Pattipati, K.R., Alexandridis, M.G., “Application of
Heuristic Search and Information Theory to Sequen-
tial Fault Diagnosis,” IEEF Transactions on Systems,
Man, and Cybernetics, Vol. 20, No. 4, July 1990,
pp.872-887.

[13] Bertsekas, D.P., Dynamic Programming: Determin-
wstic and Stochastic Models, Prentice-Hall, Engle-
wood Cliffs, NJ, 1987.

[14] Shakeri, M., Pattipati, K., Raghavan, V., and Deb.
S.,“Near Optimal Sequential Testing Algorithms for
Multiple Fault Isolation.”, to be presented at [EEE
SMC conference, San Antonio, Texas, Oct. 1994.

