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ABSTRACT

Modern systems such as the Space Shuttle, the International Space Station, or
nuclear power plants are examples of mission critical systems that need to be
monitored around the clock. Such systems typically consist of embedded sensors
in networked subsystems that can transmit data to central (or remote) monitoring
stations. At Qualtech Systems, we are developing a Remote Diagnosis Server
(RDSTM) to implement a remote health monitoring system based on received data
from such systems. RDSTM can also be used to provide online monitoring of
sensor-rich, network capable systems such as jet engines, building heating-
ventilation-air-conditioning systems, and automobiles.

This paper presents the various components and architecture of the RDSTM.
The RDSTM is built on a three-tier architecture with a “Broker” application in the
middle layer, and multiple TEAMS-RTTM and TEAMATETM based reasoners at
the backend. The client layer consists of sensor agents that collect test results and
transmit them over a message-passing network, or technicians with web browsers
being guided through intelligent troubleshooting sessions. A database in the
backend, TEAMS-KBTM, is used to manage models and content, and collect
diagnosis logs for data mining. The solution scales easily to hundreds of sessions
in any modern workstation or server.

Keywords:  RDSTM, Remote Diagnosis Server, scalability, online monitoring, guided
troubleshooting, multisignal modeling, thin clients, telediagnosis, remote diagnosis.

1 INTRODUCTION

As technology advances, there is a significant increase in the complexity and sophistication
of systems. Consequently, system monitoring and troubleshooting presents formidable
challenges to manufacturers and end-users of sophisticated systems, such as combat aircraft,
International Space Station, and reusable launch vehicles (RLVs). Such systems, consisting of
complex interplay of electronic, electromechanical and hydraulic subsystems, can no longer be
efficiently maintained based on old and often inaccurate, technical manuals and chivalry and
heroism of field maintenance personnel. Increasingly, the complexity of the problem is
overwhelming the reasoning capacities of even the most seasoned technician, while nineteen-
year-olds are asked to maintain fleets of complex, state of the art equipment.

Motivated by the need for an integrated process for system maintenance and diagnostics in
complex systems, current research at QSI is focused on a model-based diagnosis approach,
where knowledge about system is captured in multisignal model [1]. Ideally, such models will be
developed early at the design stage to perform diagnosis analysis, and evolve with the system.



We have developed a comprehensive tool set that uses this model of the system (see Figure 1) to
perform Design for Testability (DFT), Failure Modes and Effects Analysis (FMEA), reliability
analysis, online monitoring and diagnosis, flight line and depot level maintenance, and
maintenance management, data logging, mining, configuration control etc. Our integrated
diagnosis tool set [2] consists of:

•  TEAMSTM: Testability assessment and improvement (DFT), reliability analysis, Failure
Modes, Effects and Criticality Analysis (FMECA) and pre-computed diagnostic test
strategy generation in a variety of forms (e.g., SGML-based Interactive Electronic
Technical Manual);

•   TEAMS-RTTM:  on-board diagnostics, health and usage monitoring systems;

•   TEAMATETM:  Portable Intelligent Maintenance Aids (PIMAs) with interactive electronic
technical manuals and multi-media animation, dynamic TPSs for ATEs.

•   TEAMS-KBTM: Scheduled and unscheduled maintenance and diagnostics data collection,
statistical data analysis and data mining for trend and anomaly detection/isolation.
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Figure 1: QSI’s Model based Integrated Diagnosis Toolset

All of these tools utilize a common model of the system, wherein information about failure
sources, tests and monitoring points, redundancy and system modes are captured in colored
directed graph models known as multisignal models [1]. In simple terms, these models enable the
inference engine to interpret test results by answering these questions: given a test T1, which
components can cause it to fail; or, if I want to check the health of component C1, which tests
can observe it. Such models may be automatically generated via fault simulation or developed in
the TEAMSTM graphical user interface based on engineering understanding of the system or
legacy data captured in FMECA reports, fault trees, CAD data, and technical documentation.
These models are modular and hierarchical, closely related to the structure, and capture system
specifications and test capabilities in simple graphical terms, and are therefore, easy to create and



maintain. Yet, they are rich enough to capture redundancies in fault-tolerant system, modes of
operations in dynamic systems, setups, instrumentation, skills required to perform tests, and level
of maintenance (i.e., Onboard, Flight Line, Depot Level). Use of the same model across all
disciplines and maintenance phases ensures efficient and seamless transfer of diagnosis
knowledge, avoids duplication of effort, and prevents any expectation gap between analysis and
implementation. Thus, they implement a comprehensive and integrated life-cycle view of
diagnosis and maintenance in sharp contrast to the fragmented approach in practice today.
Further, since TEAMSTM uses the same model for testability analysis as TEAMS-RTTM (for
onboard monitoring) and TEAMATETM (for guided troubleshooting), the results predicted in the
design stage are achieved in actual operations.

Current research at QSI is focussed on making this integrated diagnosis toolset accessible
over the network so that systems can be remotely monitored and diagnosed. For many systems,
such a solution is necessity. For example, the Space Shuttle and the International Space Station
(ISS) rely on elaborate ground support systems for monitoring and management of system
health. NASA mission control utilizes a highly trained team of engineers to provide ground
support for all space missions. However, such elaborate ground support infrastructure was
primarily designed to support missions of finite duration. For open-ended missions, such as that
of the ISS, this is economically infeasible.  A fast, scalable remote monitoring system is needed
to continuously monitor the telemetry stream from the ISS, thereby reducing staffing
requirements  for around-the-clock monitoring. Further, this software system should be able to
process the alarms, form a diagnosis, assess problem severity and its impact on mission, look up
resolution procedures, and guided the engineer or astronaut through an optimized
troubleshooting process, thereby improving response time to events, and providing just-in-time
maintenance procedures and training to support staff.

At Qualtech Systems, we have developed Remote Diagnosis Server (RDSTM) under a NASA
Phase II SBIR that can support multiple simultaneous diagnostic and maintenance sessions from
a variety of remote systems. Clients can connect to RDSTM over networks (wired, wireless, dialup
connections etc.) and get health assessment and intelligent troubleshooting procedures over a
web browser. The solution scales easily to hundreds of sessions in any modern workstation or
server. In this paper we present the various design considerations and  architecture behind our
RDSTM solution.

2 THE REMOTE DIAGNOSIS SERVER

2.1 RDSTM Design Requirements

When designing the RDSTM architecture, the following considerations were of utmost
importance to us:
1. Preserve investment in current TEAMSTM toolset: The TEAMSTM toolset represent years of

research, development and validation by QSI. We wanted to preserve our investment in these
tools and avoid rewriting and revalidating any of the code and algorithms. Further, we
wanted the new architecture to make the runtime reasoners (i.e., TEAMS-RTTM and
TEAMATETM) network accessible, while preserving their existing standalone and embedded
mode of development.



2. Scalability: The resultant solution must be scaleable in the true sense of the word, i.e., it must
be able to scale from small, embedded computers to massive servers. For example, existing
applications of TEAMS-RTTM required that we be able to embed TEAMS-RTTM in a 75MHz
Pentium computer to monitor a system with approximately one thousand sensors. In the
server context, we would like to monitor hundred such systems in a small server, and
thousands of such systems in a large server. Likewise, TEAMATETM needs to be fully
functional in a single user laptop environment, or in the context of a network server with
hundreds of users accessing guided troubleshooting services over wireless networks using
thin clients.

3. Transport neutral: RDSTM should operate in any message-passing network environments.
Examples of message passing systems include 1553 bus systems, loosely coupled networks
relying on sporadic satellite communications, the Internet, and local area networks. All these
networks have one thing in common – they can send and receive messages. RDSTM was to be
set up as an asynchronous system, where it receives messages, and responds to them. The
transport layer is responsible for reliable message delivery, without any guarantee of
throughput or latency.

4. Cross Platform Interoperability: RDSTM would be a client server solution where a centrally
located server would monitor hundreds of clients running in a wide variety of hardware and
operating systems. Thus, we should not make any assumptions about the client operating
system, except for some minimal conformance to RDSTM specifications. Further, any
software we develop for client environments must be portable, and hence written in ANSI C.

5. Service Provisioning: RDSTM would be monitoring multiple systems at the same time.
However, we did not want any one client overrunning the server with too much sensor data.
This was motivated by possibility of poorly designed chatty clients and denial-of-service
attacks prevalent in the Internet. We took this criteria a step further and decided that the
response time of RDSTM should be constant over its operating range so that service provided
to any client is unaffected by the total number of clients in the system.

6. Online and Interactive services: RDSTM embodies two kinds of reasoning services. The
TEAMS-RTTM implements online monitoring, where incoming data should be buffered and
acknowledged quickly so that the onboard systems don’t have to wait for RDSTM to process
the data. This would be the non-blocking mode of operation. However, guided
troubleshooting sessions, such as using TEAMATETM, are interactive, and the user waits (or
blocks) until RDSTM provides the next step. Both forms of handshake and flow control had to
be implemented in RDSTM.

7. Load Balancing and Distribution: This is an extension of the scalability problem where if the
computational requirements of RDSTM exceed the capacity of a single computer, it must be
able to leverage multiple loosely coupled systems in a server farm or tightly coupled cluster.
In such a configuration, distribution of clients across the multiple computers to alleviate
bottlenecks is essential.

8. Usage tracking, logging, and reporting: RDSTM must be able to track each client session and
support management and reporting functions, and archive health status information. Thus, a
supervisor should be able to review the health status of the fleet, while technicians work on
individual aircraft.  This also required that users be able to monitor live sessions, thereby
requiring multiple processes to attach to the same client data.



9. Leveraging existing technology and standards: We used established standards such as DNS,
LDAP, XML, http, and TCP/IP whenever appropriate.

10. Security: RDSTM, being a networked application, must be able to operate inside corporate
firewalls and use standard methods for authentication and access control. For example,
clients can be authenticated by checking credentials against an LDAP server, and by
performing reverse DNS lookups.

2.2 Review of Existing Technologies

We began by reviewing existing server architectures and COTS development environments.
The CORBA (Common Object Request Broker Architecture) [3] architecture appeared
promising since it was ideally suited to network enabling of legacy applications. CORBA is also
scalable, supports cross platform and cross-language interoperability, and can be implemented in
distributed computer systems. However, it assumes a TCP/IP network, and is typically too
bloated for embedded and low-ended systems. Nevertheless, we studied the CORBA architecture
and drew inspiration from its implementation techniques.

CORBA is a specific method of remote procedure execution, where a client can access a
service from a server, possibly running on a remote computer. In simple terms, the CORBA
implementations provide middleware so that a client can access a service the same way it would
access functions in a shared library. However, transparent to the end user, this function call is
converted to a message string, which is then routed through one or more Object Request Broker
(ORB) to the server providing the service, where the relevant function is exercised. The Java
RMI (Remote Method Invocation) [4] implements similar mechanism, albeit without
intermediate ORBs, and requires Java based client and server programs. RPCs (Remote
Procedure Call) in Unix and NT [5] are OS-specific, but allow direct remote invocations.

2.3 The RDSTM Broker-Agent Architecture

The RDSTM framework (see Figure 2) is inspired by the CORBA [3] in that it allows client
programs to remotely access diagnosis services over a network, and that there is a central
computer or broker that matches the clients to the appropriate service provider. Similar to
CORBA, all data is encapsulated in "strings", or "serialized" (see Figure 3), to enable the clients
to invoke RDSTM services. We also borrowed concepts from shared memory architecture [6] and
messaging protocols such as the Tooltalk protocol [7], to add functionality for message
buffering, queuing and dispatching. In addition, we implemented concepts of “Handler” and
“Observer” from the Tooltalk protocol, so that we could implement supervisory or reporting
functions on top of normal monitoring and diagnosis services. Modeling of the RDSTM broker
after the CORBA architecture also helped us preserve our existing TEAMS-RTTM and
TEAMATETM investment, while offering interoperability in a heterogeneous network, and
leverage open standards like TCP/IP, DNS, LPAP etc.

However, the broker implemented in the RDSTM architecture is quite different from the ORBs
in CORBA and offers some unique capabilities.

• It implements both blocking (i.e., the client call blocks and waits for the server to complete
execution, as in CORBA) and non-blocking (i.e., the broker acknowledges the receipt of
message and releases the client call, as in message queues and Tooltalk) mechanisms. The
RDSTM broker automatically selects the mode appropriate for the service (i.e., non-blocking



mode for online monitoring, and blocking mode for guided troubleshooting). This helps us
satisfy the sixth requirement outlined in section 2.1.

• It is customized to our application, and therefore a much more compact implementation than
CORBA. The Broker code is currently less than ten thousand lines of code, and yet
implements functions for session management, flow control, load distribution, usage tracking,
logging, etc., which are often lacking in all but the high-end CORBA implementations. This
helps us scale down to small embedded applications with relative ease (requirement 2 in
section 2.1)

• It is a hybrid model, where serialized messages are buffered in a shared memory message
queue instead of being delivered directly to another ORB or the server. This is because
message passing and remote method invocation systems usually sequester data structures
behind a centralized manager process; therefore, any process that wants to manipulate the
structures will have to wait its turn and ask the manager to perform the operation on its behalf.
In other words, multiple processes can't truly access a data structure simultaneously in these
conventional systems. A directly accessible message pool allows multiple services to act on
the same message. This facilitates use of specialized programs for reporting, logging, and
diagnosis, all acting on the same message, in the RDSTM framework (requirement 8 in section
2.1).

• It performs flow control to ensure that any particular client does not hog disproportionate
amount of server resource. For non-blocking clients, RDSTM buffers the incoming messages in
a queue and throttles the client whenever the queue limits are reached. For blocking clients,
RDSTM enforces a response time of one second even on a lightly loaded server. Thus the user
always observes a one-second processing time, irrespective of the number of users in the
system, as long as the server is at or under capacity. This helps us satisfy our key requirement
for service provisioning stated in the section 2.1.

• It uses a broker-agent architecture where agents monitor the shared memory buffer managed
by the broker for actions, rather than the broker notifying handlers when new requests come
in. This concept is similar to the JavaSpaces methodology [8], where processes don't
communicate directly, but instead coordinate their activities by exchanging objects through a
space, or shared memory. These processes, or agents, are task oriented, and are used to
incorporate new or existing services (e.g., TEAMS-RTTM and TEAMATETM reasoning
services) into the RDSTM framework.

Perhaps the most unique feature of the RDSTM architecture is this broker-agent architecture
that merits further discussion. As an example, consider an online auction system that brings
buyers and sellers of goods and services together. Suppose you, as a potential buyer, describe the
item (such as a car) you'd like to buy and the price you're willing to pay, wrap the information in
an message, and send it to broker, who puts it in the message pool. At the same time, potential
sellers continually monitor the message pool for the arrival of wanted-to-buy entries that match
items in their inventory. For example, Mazda dealers monitor the message pool for entries that
describe Mazdas, while used-car dealers monitor the message pool for all used-car requests.
When a matching request is found and read, a potential seller writes a bid entry into the message
pool, stating an offering price. As a potential buyer, you continually monitor the message pool
for bids on your outstanding requests, and, when you find one that's acceptable, you remove the
bids and contact the seller (possibly through another message). In the above analogy, the buyers



and sellers correspond to the clients and agents respectively, while the broker facilitates
exchange of messages by managing the integrity of the message queue, cleaning up expired or
processed messages and allocating buffers to hold the messages. This approach scales naturally:
it works the same way whether there are 10 buyers available or 1,000. The approach also
provides natural load balancing, since each agent picks up exactly as much work as it can handle
in a given time, with slow agents doing less work and fast agents doing more.
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Figure 2: The Remote Diagnosis Server Framework

The RDSTM architecture is built around the philosophy that the scalability of the software will
be derived from the Broker and, therefore, the Broker will have to be very efficient and
lightweight. Further, it should be possible to add new functionality without increasing the
complexity of the Broker. Consequently, the Broker is service-neutral by design. While it
manages the constituent services and sessions, it has no knowledge of the underlying
mechanisms or data dependency of the individual services. The constituent services of the
RDSTM are implemented by the appropriate service providers (e.g., TEAMS-RTTM and
TEAMATETM), as abstracted to the Broker by the corresponding agent. The beauty of the
architecture (Figure 2) is that all tasks are performed by a multitude of agents, each with a
specialized function, while the broker performs housekeeping functions, such as session and
message pool management, and garbage collection. The resultant solution is also more
manageable and extensible compared to alternate monolithic architectures, and scales efficiently
from desktop computers to servers with dozens of processors. It also supports upwards of 300
concurrent clients in modest workgroup server configurations.



The essential constructs of the RDSTM framework have been described in earlier papers [9,10]
and are not repeated here. More information and PDF versions of the papers are available in
http://www.teamqsi.com/rds.
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2.4 Performance Results

We ran extensive simulations to test the scalability of our RDSTM solution. Our current
computational resource restricted us to using up to 500 concurrent clients, although we feel very
confident that the architecture will scale to thousands of clients in larger computers. We
simulated problems of size 100, 1000, and 10,000 failure sources. For problems of size 100, we
could easily simulate 500 concurrent clients, whereas for 10,000-failure source system, we could
only simulate 8 concurrent sessions. This is because the complexity of the problem grows
linearly with the number of failure sources or number of tests. In all cases, the processing time
per client stayed constant, independent of the number of clients, which satisfies one of our major
design criteria.

In the phase II SBIR, we also modeled a section of the 1553-bus system of the ISS [11], a
highly redundant, re-configurable, dynamic, fault-tolerant system. We used this model to verify
the accuracy of our diagnosis algorithms and to test its performance. Two sets of tests were
performed. In the first set, we seeded random faults in our sensor_agent test data generation



program [9,10], and generated data that emulates the observed test data from the telemetry
stream. We then uploaded this test data to RDSTM for diagnosis, and compared the RDSTM

generated diagnosis against the seeded faults. In the second set, we set up about ten concurrent
test cases where the data was continually uploaded every 1 second interval, and the seeded fault
randomly changed at irregular intervals. We evaluated the diagnosis accuracy on both cases, and
found it closely matches the detection and isolation performance predicted by testability analysis.
The second test case also measures the throughput performance of the RDSTM server. On a SUN
workgroup server (E250) with two 400 MHz UltraSPARC II processors, the CPU utilization was
under 10% during test set 2, indicating this configuration could monitor approximately a hundred
similar systems onboard the ISS without any difficulty. We verified this claim by running 100
concurrent interactive diagnosis sessions with RDSTM and TEAMATETM without any
computational bottleneck. Further, the processor and memory utilization scaled almost linearly
with the number of sessions, while the response time remained below the 1-second data interval.
Based on these results, and simulation tests on many other models, we feel confident that our
RDSTM solution can perform effective concurrent monitoring and diagnosis of tens and hundreds
of ISS systems in real time.

3 CONCLUSIONS

In this paper, we presented our experience in developing a telediagnosis architecture for
monitoring, diagnosis, and health management of remote systems. This effort was initially
motivated by the need for a remote monitoring solution for the International Space Station. The
resulting server, RDSTM, can simultaneously support hundreds of client sessions over standard
Internet protocols such as TCP/IP and http. The resultant architecture is now in patent pending
status.

QSI will launch its Remote Diagnosis Server product in summer of this year. There is
considerable interest from NASA and other leading aerospace companies that lead us to believe
that the RDSTM solution will soon be applied to the dignosis of a variety of remote systems. For
example, Honeywell is using our RDSTM software and TEAMSTM models to develop a
comprehensive demonstration for remote monitoring of the space station based on telemetry
data. In an internal project, they are setting up software to mimic real-time extraction of sensor
and test data from the telemetry stream, and using RDSTM for health assessment and diagnosis.
For the demonstration, Honeywell has selected a portion of the power distribution system
identified as LAAFT-2B Power Distribution Assembly. Other applications include monitoring of
engine health and a comprehensive wire integrity program involving routine and unscheduled
maintenance of wiring systems of aging aircraft.

The development of RDSTM is a major milestone in our plan for commercializing integrated
system design, diagnostic and prognostic tools. Our integrated toolset helps achieve lower life-
cycle costs by addressing reliability, testability and maintainability issues: failure analysis,
design for testability, automated testing, interactive diagnosis, and real-time system health
monitoring. While many of our competitors offer products in the areas of integrated diagnosis,
most lack a real-time diagnosis engine, and none have a networked diagnosis server capability.
Until now, real-time diagnosis and prognosis have been available to a selected few multi-million
dollar applications. The remarkable aspect of this technology is that it is accessible over Internet
and modems, making real-time diagnosis universally accessible! This is a key discriminating



factor that will enable us to reach beyond the niche market of integrated diagnosis, and tap into
consumer applications and e-business.

For example, the modern automobile has enough sensors to detect the slightest performance
problem. The engine computer(s) monitor fuel mixture and ignition system for optimal fuel
efficiency, drive-train computer(s) monitor the grade of the road, torque and acceleration to
select the correct gear, and antilock brake systems detect wheel lock ups and dynamically
adjusting for brake wear. Some high-end models already come equipped with communication
links (e.g., OnStarTM by Cadillac) that can report mishaps, e.g., an accident causing airbag
deployment, to a central monitoring station.  In a few years, such features will be available on all
cars. Presently, such communication links are offered primarily as a safety net, or as a link to
customer and concierge services. However, they can easily be adapted to transmit onboard data
to a RDSTM service where car troubles can be quickly diagnosed. It is therefore conceivable that
soon, the driver of a stalled car will be able to get a prompt diagnosis using RDSTM service, and
AAA would dispatch roadside assistance with the exact spare part required to fix the problem.
The applications of RDSTM are not limited to the automobile. Remote health monitoring of home-
care patients and battlefield soldiers are two of the more promising applications. Modern high
rise buildings consist of elevators, escalators, heating and ventilation systems etc. that also need
to be monitored around the clock. Utilizing RDSTM, a central facility could monitor entire cities
of high-rise buildings from one central location.

RDSTM is an essential piece of technology that makes such applications feasible.
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