
TEAMS-Mobile: BlackBerry
Sponsored by Qualtech Systems, Inc.

Advisor: Dr. John Chandy, ECE
Advisor: Kristian Balinski, QSI

C.J. Manville, EE & CSE
Rockwell Schrock, CompE

Steve Swirsky, EE

Overview
TEAMS-Mobile is an extension of the Qualtech Systems, Inc. (QSI) diagnostic software service that

runs on mobile computing devices. The TEAMS-Mobile: BlackBerry project is writing a native
application to implement all of the necessary features to conveniently run the automated diagnostic
software on a BlackBerry device.

Diagnostics are important in every industry because inevitably all machinery over a long enough
time span will break down and need diagnostic attention. Most diagnostic procedures are done as
individual case-based problems, where a technician tries to use a brute-force method to figure out
that particular failure. This method is time consuming and inefficient on a large scale because it takes
many hours of highly-trained technicians.

There is an alternative to case-based diagnostic analysis, and that is model-based analysis. Model-
based analysis offers many advantages over case-based, including: more efficient diagnosis, lower
necessary technician expertise, more efficient preparation for troubleshooting, and a dynamically
evolving and improving diagnosis system that improves from each case. QSI uses this model-based
approach, providing software to model how a particular system fails. To create the diagnosis model,
an expert of the given system is required to go through the possible outcomes in the beginning of the
process. This can be considered by some to be a large initial time and effort investment, but it allows
for much greater troubleshooting efficiency later on, utilizing the expertise of someone with intimate
knowledge of the system.

Background
The TEAMS-RDS server is the brains of the TEAMS suite of applications. It is a powerful model

analysis tool that has a convenient Web interface for running diagnostics. It is one of QSI's flagship
products. However, its Web interface must be accessed through a full-blown Web browser client
application. This requires both a computer capable of running a browser and an active, uninterrupted
network connection.

The interface for TEAMS-RDS is designed for large laptop displays. There is a mobile Web
interface, but it is crude and out-of-date. It does not support the new functionality of modern mobile
device browsers. Again, this still requires an active network connection and a decently fast browser.

Last year's Qualtech senior design team began tackling these issues by developing a mobile
application called TEAMS-Mobile. This application runs on the Windows Mobile platform. It runs
through a troubleshooting session based solely on a static XML decision tree that has been generated
by TEAMS-RDS. Therefore, it always functions in a stand-alone, "offline" mode without ever talking
directly to TEAMS-RDS.

Solution
To overcome the primary limitations of a Web application, we are instead utilizing the native

application programming interface (API) of the BlackBerry mobile device. This includes the user
interface generation as well as parsing and traversing of the XML decision tree provided by the
server. Initially we explored using Web Services to communicate with the server. This would be
expensive for Qualtech employees to develop, and is not possible to complete in our short
development window.

The existing TEAMATE application, which has similar functionality to TEAMS-Mobile, is used on a
notebook computer. Many clients have systems stored in sensitive areas where an outside laptop
cannot be brought in for security purposes. Therefore, a technician would not be able to bring in a
notebook to use TEAMATE to troubleshoot a system there. However, many of these places allow
smart phones where laptops can't go. This is where TEAMS-Mobile will come into play.

We are also working to expand TEAMS-Mobile into other mobile platforms. Windows Mobile was
supported with last year's project, and we are writing for BlackBerry to support five current BlackBerry
devices. Because the BlackBerry API is backwards-compatible, future BlackBerry devices should be
equally supported with little to no modification. We also plan to engineer the core functionality of the
application to be coupled with Java Micro Edition (ME) to make it easy to port to other Java-based
mobile device platforms, such as Android.

Requirements
TEAMS-Mobile should support an online mode in which the user logs into the TEAMS-RDS server

with their credentials, with the option to remember these credentials for future sessions. Once logged
in, the user selects a system to troubleshoot as well as various properties, such as model and serial
number. The user cannot bring it seems that the client into offline mode until they have specified
symptoms, required resources, and optional resources. It is at this point that the TEAMS-RDS server
is ready to return a troubleshooting tree if necessary in the future.

The user then manually specifies when to take troubleshooting into offline mode. Once a session
goes into offline mode, it cannot be brought back online by reconnecting to the server. The only
further communication with the server at that point is to report back a log file with the troubleshooting
results and feedback.

Similar to TEAMATE, individual troubleshooting steps should require that the user reads all
applicable notes, cautions, and warnings before continuing with that step. Also, in offline mode, the
user should be able to step back and forth through troubleshooting steps. When troubleshooting is
complete (whether successful or not), the user must enter feedback for this session. Then a log file of
this session is generated and stored locally awaiting transmission back to the TEAMS-RDS server.

The log file will be uploaded to the TEAMS-RDS server across many protocols, such as HTTP(S),
FTP, and SMTP. This is configured by the user. Log files should only be synchronized with the server
where the troubleshooting started. If a user never brings the troubleshooting session offline then a log
should not be generated since TEAMS-RDS will have performed all the logging thus far.

Specifications
TEAMS-Mobile is specified to work on BlackBerry devices with OS version 4.6 and higher. The

Java development environment we will use is the BlackBerry JDE 4.6 plugin for the Eclipse 3.4 IDE.
Note that the version of the BlackBerry JDE, 4.6, matches the lowest common BlackBerry OS version
which is supported.

In addition, network connectivity is required for initial configuration steps between the TEAMS-
Mobile client and the TEAMS-RDS server. It is also needed for reporting log files of completed
troubleshooting sessions back to the server.

The following is a table of the five specific devices on which we will test TEAMS-Mobile. This
selection covers the gamut of modern-day BlackBerry models, from trackball devices with various
screen sizes up to the Storm with its touchscreen interface. We do not have the physical devices on
hand to test, so we will use simulators provided by RIM.

Model Display Keyboard Interface Processor RAM
Curve 8900 480 × 360 Hard Trackball 512 MHz 256 MB flash

Bold 9000 480 × 320 Hard Trackball 624 MHz 128 MB flash

Tour 9630 480 × 360 Hard Trackball 528 MHz 256 MB flash

Storm 9500/9530 360 × 480 Soft Touchscreen 528 MHz 128 MB flash

Design Choices

Mobile Platform

BlackBerry and iPhone are two of the most popular smartphone brands on the market today, they
have certainly outpaced windows mobile devices and most likely will continue to be the most popular
consumer choices, besides potentially Android phones (Android also runs on the java framework like
the BlackBerry, so developing for BlackBerry will ease a port to Android). Even though BlackBerry
and iPhone may be nearly as popular as each other in a consumer market, it seems that Blackberry is
often preferred over iPhone in the business setting. Many companies own BlackBerry servers, which
ensures that employees will buy BlackBerry devices instead of switching to other alternatives, and
maintaining BlackBerry popularity.

The development environment for the BlackBerry device was also a better choice than that of the
iPhone. The iPhone would have required a usable Apple machine to develop on, which was not
available and would have needed to be purchased. All BlackBerry tools were open source and
freeware which has made it easier and far more cost effective to develop the blackberry device.
Especially since our budget is zero dollars.

Blackberry JDE Version (4.5.0)

We decided to support the BlackBerry JDE version 4.5.0 and up, on the basis that it is compatible
with many devices on the market today. Specifically, we are supporting the Curve 8900, Bold 9000,
Tour 9630, and the Storm 9500 and 9530. The JDE version number corresponds to the version
number of the BlackBerry operating system running on these devices. It is designed to be fully
backwards-compatible, so that any future operating systems should be able to support our application
with no modifications.

The newest JDE is version 5.0.0 and is in beta testing right now. It shifts the navigation paradigm
away from trackballs and towards touchscreen devices with large displays and soft keyboards. The
newer JDE also features nicer debugging tools, including hot-swapping code on a running simulator.
Once the market shifts toward newer devices, it may be beneficial to update TEAMS-Mobile to
support version 5.0.0.

Online and Offline Mode

TEAMS-RDS already has an online troubleshooting site that is specifically formatted for mobile
Web browsers. It is through a Web browser that the user first begins their troubleshooting session.
After supplying configuration options to define the address of the server, the user can then log in,
select a model, symptoms, resources, and so on, and may then begin troubleshooting directly in the
browser.

At this point, the user may choose to go offline. The TEAMS-Mobile client will send an HTTP
request to the server to determine if it can take the session offline, and to retrieve a static diagnostic
tree if applicable. Then the ModelParser class will be used to parse the XML tree and begin logging
the user's session. It is at this point that the interface switches to native BlackBerry GUI elements.

XML Parser

We looked at a number of XML parsers, including Oracle's parser, Apache's Xerxes, Sun's JAXP
and JDOM, among others. For ease of porting from last year's incarnation of TEAMS-Mobile, we
decided to use a DOM parser as opposed to a SAX parser. Since the minimal DOM parser included
in the BlackBerry API did not include the ability to use XPath, an ability we need for our project, we
decided to find a third party parser. Many of the standard parsing solutions carried far too large a
footprint to be justified for our mobile platform, so we decided on a lightweight DOM parser called
Sparta that was made specifically for Java ME applications.

Code Walkthrough
Namespaces

com.hp.hpl.sparta Contains third-party Sparta XML DOM parser
implementation

com.hp.hpl.sparta.xpath Contains third-part Sparta XPath implementation

teamsmobile Initializes application and defines access to global
variablesthat

teamsmobile.config Stores and retrieves application-wide user preferences

teamsmobile.resources Provides string tables for internationalization

teamsmobile.session Contains objects that represent a troubleshooting session
and all its individual types of steps

teamsmobile.session.logging Provides one-to-one mapping of Java business objects to
the log XML format

teamsmobile.session.logging.transport Defines different mechanisms by which a log can be
submitted to the server

teamsmobile.ui Provides miscellaneous custom UI components

teamsmobile.ui.browser Provides a simple implementation of an embedded Web
browser

teamsmobile.ui.dialogs Defines all custom modal dialogs

teamsmobile.ui.screens Defines the GUI implementation of all the main screens the
user interacts with

teamsmobile.ui.screens.config Defines the main configuration screen and any sub-screens

teamsmobile.util Provides generic functionality for miscellaneous classes

teamsmobile.xml Provides logic to parse and log interaction with a static XML
decision tree

Important Components

Arguably, the core component of this project is teamsmobile.xml.ModelParser. This is a near-direct
port of the model parser class from the Windows Mobile project. This class traverses any static XML
decision tree and determines the flow of the offline troubleshooting session. It is contained within an
instance of the teamsmobile.session.Session class, which encapsulates the functionality of the parser
into a user-friendly interface. The Session class also keeps an instance of
teamsmobile.session.logging.SessionLog to compile a log of all the user's actions for transmission
back to the server.

The log file is submitted by any implementer of the abstract class
teamsmobile.session.logging.transport.TransportMethod. This class exposes a simple public routine,
send(InputStream, String), that handles the entire sending of the log XML file. EmailTransport is one
such implementation.

All of the application configuration settings are collected in the teamsmobile.config.Settings class,
which contains public functions for loading and saving settings from a persistent object store provided
by the BlackBerry operating system.

Implementation
As stated earlier, the Java development environment we will use is the BlackBerry JDE 4.5.0 plugin

for the Eclipse 3.4 IDE. Java is also used by other phone manufacturers for their devices, such as
Google (Android), LG, Palm, and Nokia. The development environment includes BlackBerry device
simulators, so we can test our system without requiring the purchase of any physical devices. An
image of one of the simulators running our project in offline mode is shown below:

The welcome screen A test step with two possible outcomes

A test step showing the "why" notes The final step, a corrective action

A key functionality of the system is the transition between online and offline modes, as well as the
offline logging functionality with the ability to report back to the RDS server. A diagram of the program
flow between online and offline modes is shown below:

Online Component

Unfortunately, the RIM BlackBerry API does not contain an easy-to-use browser field to add to
one's applications. Instead, there are a myriad of classes in the net.rim.device.api.browser.field
package to facilitate the rendering and event-handling of the browser. This means that basic browser
functionality such as history, cookies, and caching must be handled by the implementer. The solution
was to use some provided sample code that implemented a single-threaded browser very simply. This
code was encapsulated in the teamsmobile.ui.browser package for convenience.

The menu for the browser screen was modified to include a "Go Offline" menu item. This menu
item requests a specific URL from TEAMS-RDS and attempts to download a static XML decision tree
to continue the troubleshooting session offline. If the server determines that it cannot go offline at that
time, it will return some type of error response not yet determined, and then the client should inform
the user of this fact and continue in the online mode.

Offline Component

The offline component is entirely a native BlackBerry application. After receiving a diagnostic tree
from RDS, the application is able to parse the XML and walk the user through the troubleshooting
process while logging pertinent information on the session as per QSI's logging format.

The diagnostic tree received from RDS consists of four main node types: pre-setup, test, post-
setup, and module (leaf). When a user starts a session the application finds the first test to be
performed. Upon completion of the pre-setup for that test, the application presents the user with the
test instructions. A test node may contain sub-nodes of advisories, warning the user of potential
injury during the test, and why notes, which explain to the user why the current test is pertinent. After
completing the test the application moves to any necessary post-setup, which may be nothing, and
according to the user input on the result of the test then moves to the next test or to a module node.
Module nodes are leaf nodes which represent the conclusion of a troubleshooting session. Upon
reaching a module node, the application presents the user with a corrective action screen and then
asks for feedback on the troubleshooting session. A diagram of the diagnostic tree flow is on the next
page.

While guiding the user through the diagnostic tree, the application keeps track of information on
what the user does and the outcome of the troubleshooting session. Upon completion of the
corrective action, the application generates a new XML file that follows the database table format
used in QSI's logging system and fits all of the requirements for being sent to and read by RDS. The
XML log file is then placed in the BlackBerry's outbox to be automatically sent to QSI when network
connectivity is available.
A simplified template of the xml log file format follows:

<?xml version="1.0" encoding="UTF-8"?>
<RDSLOGS VERSION="1.1"

MODEL_NAME="<model-name>_<model-revision>"
SYSTEM_MODEL_NAME="<model-name>"
SYSTEM_MODEL_REVISION="<model-revision>"
SYSTEM_NAME="<system-name>"
SYSTEM_REVISION="<system-revision>"
SESSION_ID="<session-id>"
START_TIME="<session-start-time>"
USER_NAME="<user>">
<TABLE NAME="<table-name>" NUM_COLUMNS="<table-numcolumns>">

<ROW>
<COLUMN NAME="<column-name>" NULL="[true|false]" TYPE="

[DOUBLE|BIGINT|INTEGER|SMALLINT|VARCHAR|
LONGVARCHAR|TIMESTAMP|DATE|LONGVARBINARY]" >

<![CDATA[<column-value>]]></COLUMN>
<COLUMN ...>...</COLUMN>

</ROW> <ROW> ...</ROW> </TABLE> <TABLE ...> ... </TABLE> </RDSLOGS>

Screen Flow Diagram

This diagram shows the flow of the program as it appears to the end user. Blue arrows indicate
going forward in the troubleshooting process, while orange arrows indicate going back, usually
implemented when the user presses the "Escape" hardware button on the BlackBerry. The online-only
portion of the user session is outlined in the dashed box. For steps outside this box, the user may
choose to go into offline mode. It is important to note that the user is not able to go back from the
initial troubleshooting step where they went offline. At this step, they may only suspend the session on
the BlackBerry device for resuming later.

Timeline

Our first phase, Research and Design, is to gather experience with QSI products as well as
research our target platforms and decide on specific specifications and requirements. This design
phase has been extended further to overlap with the development phase, because there are many
software-level design decisions that have yet to be made. However, they must be made concreted
before development can finish, so that we are not trying to hit a moving target, so to speak.

Actual development began withn porting the existing TEAMS-Mobile application from the .NET
Compact Framework over to Java ME and the BlackBerry SDK. In this phase we learned the XML
decision tree format better and got a feeling for BlackBerry development.

We then wrote a layer of the application to communicate with the server to act in "online mode" by
implementing a bare-bones web browser. Then the offline logging and transportation of log files
functionality was completed and tested. Finally, the user interface (UI) was evaluated and tweaked to
specification.

Budget

All the BlackBerry development tools are provided as freeware by RIM, and the Eclipse IDE is
open-source. Our development server was provided by the School of Engineering, and we're using
the freeware Subversion server VisualSVN. Therefore, we did not have any expenses, and our total
budget was $0.

Future Considerations

Online to Offline Transition

There are a few implementation details left in the transition of the client troubleshooting session
from the online mode to the offline mode. First, the client must be able to properly consume the HTTP
response of RDS to determine if it can go offline.

As noted before, there is a lot of logging information that the client needs that is not currently being
delivered from RDS. Once Qualtech adds this additional metadata to the XML decision tree, it is job of
the BlackBerry application to parse out this additional information and add relevant session
information to the output log file.

Graceful Exception Handling

Many of the handled exceptions in our application simply print the exception text to the debugging
console and then halt. These exceptions should be handled more gracefully, sending a dialog to the
user, and then transitioning the troubleshooting session to the appropriate state and displaying the
appropriate screen following the exception.

Polishing of the GUI

The BlackBerry graphical user interface is usable, but could use some tweaks to achieve a more
pleasing, intuitive layout. Additionally, the XSL stylesheets that define the Web interface of TEAMATE
could be tweaked to better match the user interface components of the BlackBerry platform.

Additional Transport Mechanisms

TEAMS-Mobile currently only supports the submission of log files to RDS via a plain-text,
unencrypted e-mail message. Additional steps should be taken to protect this log file from tampering
by the user. We would also like to support additional methods to submit the log to RDS, such as
HTTP and FTP. See the Requirements appendix for more information.

Saving of Session State

Currently there is no mechanism for TEAMS-Mobile to save the state of a session that has been
taken offline. These session objects and their logs should be saved in the application-wide
configuration object for an easy implementation. When a session log is sent to RDS, its session
should then be removed from this local session store.

Appendix: TEAMS-Mobile Requirements

Online Mode

• Configuration screen should be available before logging in to let user change server
address, reporting method, etc.

• User must be able to log in as a technician and select and existing system model and serial
number.

◦ User should be able to save login credentials
• Users cannot bring the troubleshooting session offline until they have selected symptom(s),

required resource(s) and optional resource(s)

Offline Mode

• Once a troubleshooting session is brought offline it cannot be brought back online
• If the application quits in the middle of a troubleshooting session, it should be brought offline

and the user should be given the option to continue that session when restarting the
application

Troubleshooting

• Individual troubleshooting steps should require that the user read notes, cautions, and
warning messages before continuing with that step.

• User should be able to go back or forward through troubleshooting steps (offline only)
• At the end of a troubleshooting session a user must enter feedback for the session
• User should be able to view list of session history
• Progress bar should display user's progression in the troubleshooting session

Log Files

• Once the troubleshooting session is complete a log will be generated in a format that
TEAMS-RDS can consume

• Log will be pushed to TEAMS-RDS using the method that has been configured by the user.
If no configuration has been specified the log will go into a temporary holding store.

◦ The temporary holding store must be secure so the user cannot modify the test
results.

• Logs can be sent to TEAMS-RDS using the following methods:
◦ HTTP/HTTPS
◦ FTP
◦ File (more than likely network push)
◦ Email

• Logs should only be synchronized with the TEAMS-RDS server upon which the session was
started

• Logs should be automatically synchronized with the TEAMS-RDS server as soon as
possible, and without user intervention.

• If a user never brings the troubleshooting session offline then a log should not be generated
since TEAMS-RDS has performed all the logging thus far.

User Interface Screens

◦ Welcome (determine what to do i.e. start session, configure application)
◦ Configuration
◦ Login (to TEAMS-RDS)
◦ Select a system
◦ Select a configuration (if the system selected is a configurable system)
◦ Pre-session Information Entry (serial number & case id)
◦ Select a symptom(s)
◦ Select required resource(s)
◦ Select optional resource(s)
◦ Pre-setup
◦ Post-setup
◦ Test
◦ Multi-outcome test
◦ Corrective Action
◦ Feedback / Submit Log Form

• UI screens should scale appropriately for multiple BlackBerry devices (different resolutions
and touch screen / trackball)

Logging

• Menu Option for going offline when applicable ie. when the session has been started
◦ when clicking on offline button, a web request will be made to a specific RDS URL

▪ of the form: <RDS URL>/
teamate?action=WORK_OFFLINE&showXML=true

• Log file must be immediately transported to the RDS server; cannot quit until log is sent
• Use e-mail outbox if available
• No user interaction required to synchronize logs; log is sent automatically at end of session.

Configurable application-wide options

• General Options
◦ RDS address (validated URL)
◦ location to store log files temporarily

• Email
◦ address and name to send log files to
◦ subject of email
◦ body of email

Appendix: TEAMS-Mobile Specifications

Software

• BlackBerry OS v4.5+ (BlackBerry JDE 4.5)
• TEAMS-RDS v11.1.3+

Hardware

• TEAMS-RDS server
◦ OS: Windows Server 2003 & 2008, Solaris 9/10, RHEL 4/5
◦ Connectivity limited by capacity of BlackBerry.

• BlackBerry mobile device
◦ Supported devices with BlackBerry OS version 4.6+

▪ Curve 8900
▪ Bold 9000
▪ Tour 9630
▪ Storm 9500
▪ Storm 9530

◦ Connectivity: cell and/or WiFi b/g

Model Display Keyboard Interface Processor RAM
Curve 8900 480 × 360 Hard Trackball 512 MHz 256 MB flash

Bold 9000 480 × 320 Hard Trackball 624 MHz 128 MB flash

Tour 9630 480 × 360 Hard Trackball 528 MHz 256 MB flash

Storm 9500/9530 360 × 480 Soft Touchscreen 528 MHz 128 MB flash

	Overview
	Background
	Solution
	Requirements
	Specifications
	Mobile Platform
	Blackberry JDE Version (4.5.0)

	Online and Offline Mode
	XML Parser

	Code Walkthrough
	Namespaces
	Important Components
	Offline Component
	Screen Flow Diagram
	Timeline
	Budget
	Future Considerations
	Online to Offline Transition
	Graceful Exception Handling
	Polishing of the GUI
	Additional Transport Mechanisms
	Saving of Session State

	Appendix: TEAMS-Mobile Requirements
	Online Mode
	Offline Mode
	Troubleshooting
	Log Files
	User Interface Screens
	Logging
	Configurable application-wide options

	Appendix: TEAMS-Mobile Specifications
	Software
	Hardware

