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Abstract— Conventional maintenance strategies, such as cor-
rective and preventive maintenance, are not adequate to fulfill
the needs of expensive and high availability industrial systems. A
new strategy based on forecasting of system degradation through
a prognostic process is required. The recent advances in model-
based design technology have realized significant time savings
in product development cycle. These advances facilitate the
integration of model-based diagnosis and prognosis of systems,
leading to condition-based maintenance and increased availability
of systems. With an accurate simulation model of a system,
diagnostics and prognostics can be synthesized concurrently with
system design.

In this paper, we will develop an integrated prognostic process
based on data collected from model-based simulations under
nominal and degraded conditions. Prognostic models are con-
structed based on different random load conditions (modes).
Interacting Multiple Model (IMM) is used to track the hidden
damage. Remaining life prediction is performed by mixing mode-
based life predictions via time-averaged mode probabilities. The
solution has the potential to be applicable to a variety of systems,
ranging from automobiles to aerospace systems.

I. INTRODUCTION

Conventional maintenance strategies consist of corrective
and preventive maintenance. In corrective maintenance, the
system is maintained on an “as-needed” basis, usually after
a major breakdown [1]. In preventive maintenance, com-
ponents are replaced based on a conservative schedule to
“prevent” commonly occurring failures. Although preventive
maintenance programs increase system availability, they are
expensive because of frequent replacement of costly parts
before the end of their life. Another disadvantage of preventive
maintenance is that it is time-based. Studies have revealed that
most of the equipment failures are not related to the number of
hours they were operated. Hence, time-based solutions are not
cost-effective. Consequently, these conventional maintenance
strategies are not adequate to fulfill the needs of expensive and
high availability industrial systems. Condition-based predictive
maintenance is an alternative that uses embedded diagnostics
and prognostics to determine system’s health. Failure prog-
nosis involves forecasting of system degradation based on
observed system condition.

The recent advances in model-based design technology
have resulted in significant time savings in product devel-
opment cycle. A number of applications of model-based
design can be found in automotive, aerospace and defense
industries. Because system model is simulated early in the
design stage, the reliability and robustness of the system are

ultimately increased. These advances facilitate the integration
of model-based diagnosis and prognosis of systems, leading
to condition-based maintenance and increased availability of
systems. With an accurate simulation model of a system,
diagnostics and prognostics can be synthesized concurrently
with system design.

In our previous paper [2], we have developed an intelligent
model-based diagnostic procedure that combines quantitative
and graph-based dependency models. The hybrid model-based
diagnostic method not only improves the diagnostic system’s
accuracy and consistency of those based solely on a graph-
based model, but also exploits the existing validated knowl-
edge on rule-based methods, enables rapid remote diagnosis,
and responds to the challenge of increased system complexity.
The hybrid model-based diagnostic process was demonstrated
on an anti-lock braking system. In this paper, the focus of
our application is on prognosis (remaining life prediction) of
an automotive suspension system. However, the solution is
generic and has the potential for application in a wide range
of systems.

The paper is organized as follows. Section 2 presents an
overview of the proposed intelligent model-based diagnos-
tic/prognostic design process [2]. Section 3 reviews the current
prognostic techniques. Section 4 illustrates the prognostic
model formulation and remaining life estimation algorithms.
Section 5 reports on a demonstration of the prognostic proce-
dure on a suspension system. Section 6 concludes the paper
with a summary and future research directions.

II. INTELLIGENT MODEL-BASED DIAGNOSIS/PROGNOSIS

A systems-oriented approach to prognostics requires that the
failure detection and inspection-based methods be augmented
with forecasting of parts degradation, mission criticality and
decision support. Such prognostics must deal not only with
the condition of individual components, but also the impact
of this condition on the mission-readiness and the ability to
take appropriate actions. However, such a continuous health
management system must be carefully engineered at every
stage of a system design, operation and maintenance.

Fig. 1 shows the block diagram of the proposed intelligent
diagnostic and prognostic process. The process seamlessly
employs graph-based dependency models for fault diagnosis,
and quantitative (analytical) models for test design and fault
detection. It contains six major blocks: model, sense, develop
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Fig. 1. Intelligent diagnostic/prognostic process

and update test procedures, infer, adaptive learning and predict.

Step 1: Model
In this step, models to understand fault-to-error character-

istics of system components are developed. This is achieved
by a hybrid modeling technique, which combines quantita-
tive models (simulation models) and graphical cause-effect
models in the failure space, through an understanding of the
failure modes and their effects, physical/behavioral models,
and statistical and learning techniques based on actual failure
progression data (e.g., field failure data) as applied to system
components. Fig. 2 illustrates the block diagram of the hy-
brid modeling approach for an automotive system controlled
by an electrical control unit (ECU). The quantitative model
is assumed to be a representative sample available in the
MATLAB/SIMULINK R© design environment. These require
extensive simulations (for nominal and faulty scenarios) to
extract the relationships between failure causes and observable
effects of the system. Information on the system model, such
as model parameters, test definitions and simulation data, is
stored in a database.

The cause-effect model, in the form of a Diagnostic Matrix
(D-Matrix), is extracted through fault simulations on the
quantitative model using tests defined in the model. After
the D-matrix is generated, this matrix and other available
system information (such as the location of faults) from the
MATLAB/SIMULINK R© environment are exported in an Ex-
tensible Markup Language (XML) format. XML is a flexible
text format and is increasingly playing a significant role in
the exchange of a wide variety of data on the Web and
among many different modeling environments. The XML file
is imported into a diagnostic analysis tool, such as TEAMS R©

(Testability Engineering And Maintenance System) [3], to
automatically layer in the cause-effect dependencies on a
structural model. TEAMS R© computes percent fault detection
and isolation measures, identifies redundant tests and ambi-
guity groups, and generates updated Failure Modes Effects
and Criticality Analysis (FMECA) report and the diagnostic
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Fig. 2. Hybrid modeling approach

tree. It also exports the D-matrix, the test code and structural
information to TEAMS-RT R© for on-board, real-time diagno-
sis. The onboard diagnostic data is seamlessly downloaded
to TEAMS-RDS R© (remote diagnosis server) for interactive
diagnosis (by driving interactive electronic technical manu-
als), diagnostic/maintenance data management, logging and
trending. The TEAM-RDS R© can also be integrated with the
supply-chain systems and logistics databases for company-
wide vehicle health management.

Step 2: Sense
The sensor suite is typically designed for vehicle control and

performance. The efficacies of these sensors are systematically
evaluated and quantified to ensure that adequate diagnosis and
prognosis are achievable. If the existing sensor suite is not
appropriate for diagnosis/prognosis, use of additional sensors
and/or analytical redundancy must be considered without im-
pacting vehicle control and performance. Diagnostic analysis
by TEAMS R© can be used to compare and evaluate alternative
sensor placement schemes.

Step 3: Develop and Update Procedures
Smart test procedures that detect failures, or onset thereof,

have to be developed. These procedures have to be carefully
tuned to minimize false alarms, while improving their detec-
tion capability (power of the test). The procedures should have
the capability to detect trends and degradation and assess the
severity of a failure for early warning.

Step 4: Infer
An integrated on-board and off-board reasoning system

capable of fusing results from multiple sensors/reasoners and
driver (or “driver model”) to evaluate the health of the vehicle
needs to be applied. This reasoning engine and the test proce-
dures should be compact enough so that they can be embedded
in the ECU and/or a diagnostic maintenance computer. In
the proposed approach, the test code and TEAMS-RT R© are
embedded in a real-time operating system to process the sensor
data and to provide inference results. If on-board diagnostic
data is downloaded to a repair station, TEAMS-RDS R© is used



to provide assistance to repair personnel in rapidly identifying
replaceable component(s).

Step 5: Adaptive Learning
If the observed fault signature does not correspond to

faults modeled in the graphical dependency model, system
identification techniques are invoked to identify new cause-
effect relationships, to update the D-matrix and to layer in
this information onto TEAMS R© model.

Step 6: Predict
Lifing algorithms, which interface with onboard usage mon-

itoring systems and parts management databases, are used to
predict the useful life remaining of system components.

In [2], we have demonstrated Steps 1, 2, 3 and 4. In the
rest of the paper, we focus on Step 6 and demonstrate it on
an automotive suspension system.

III. PROGNOSTIC TECHNIQUES

Many industrial systems exhibit increasing wear and tear of
equipment during operation [4]. For example, an automobile
has many pieces of equipment, such as the engine, gear
box and valves that exhibit various types of performance
degradation due to erosion, friction, internal damage and
cracks. Prognostics are viewed as an add on capabilities to
diagnosis; they assess the current health of a system and
predict its remaining life based on features that capture the
gradual degradation in the operational capabilities of a system.
Prognostics are critical to improve safety, plan successful
missions, schedule maintenance, reduce maintenance cost and
down time [5]. Unlike fault diagnosis, prognosis is a relatively
new area and became an important part of Condition-based
Maintenance (CBM) of systems. Currently, there are many
prognostic techniques; their usage must be tuned for each
application. The prognostic methods can be classified as being
associated with one or more of the following two approaches:
data-driven and model-based [6]. Each of these approaches
has its own advantages and disadvantages, and, consequently
they are often used in combination in many applications. This
section will provide an overview of the prognostic techniques
and their applications.

A. Data-driven Prognostics

The data-driven approaches are derived directly from rou-
tinely monitored system operating data (e.g., calibration,
calorimetric data, spectrometric data, power, vibration and
acoustic signal, temperature, pressure, oil debris, currents,
voltages). In many applications, measured input/output data
is the major source for gaining a deeper understanding of
the system degradation behavior. The data-driven approaches
rely on the assumption that the statistical characteristics of
data are relatively unchanged unless a malfunctioning event
occurs in the system. That is, the common cause variations
are entirely due to uncertainties and random noise, where as
special cause variations (e.g., due to degradations) account for
data variations not attributed to common causes.

The data-driven approaches are based on statistical and
learning techniques from the theory of pattern recognition.

These range from multivariate statistical methods (e.g., static
and dynamic principle components (PCA), linear and quadratic
discriminants, partial least squares (PLS) and canonical vari-
ate analysis (CVA)), to black-box methods based on neural
networks (e.g., probabilistic neural networks (PNN), decision
trees, multi-layer perceptrons, radial basis functions and learn-
ing vector quantization (LVQ)), graphical models (Bayesian
networks, hidden Markov models), self-organizing feature
maps, signal analysis (filters, auto-regressive models, FFT,
etc.) and fuzzy rule-based systems.

The research on data-driven approaches has focused on
monitoring of signals related to system health. In [7], a prog-
nostic process for transmission gears is proposed by modeling
the vibration signal as a Gaussian mixture. By adaptively
identifying and tracking the changes in the parameters of
Gaussian mixture, it is possible to predict gear faults. Wang [8]
used an AR process to model a vibration signal for prognosis.
However, the AR parameters (polynomial coefficients) have
no physical meaning related to the monitored system. Zhang
[9] proposed a parameter estimation approach for a nonlin-
ear model with temperature measurements of gas turbines.
The on-line detection procedure presented in [9] can track
small variations in parameters for early warning. In [10], a
dynamic wavelet neural network (DWNN) was implemented
to transform sensor data to the time evolution of a fault
pattern and predict the remaining useful time of a bearing.
The DWNN model was first trained by using vibration signals
of defective bearings with varying depth and width of cracks,
and then was used to predict the crack evolution until the
final failure. Swanson [11] proposed to use a Kalman filter to
track the dynamics of the mode frequency of vibration signals
in tensioned steel band (with seeded crack growth). In [12],
Garga proposed a signal analysis approach for prognostics of
an industrial gearbox. The main features used included the root
mean square (RMS) value, Kurtosis and Wavelet magnitude of
vibration data.

The strength of data-driven techniques is their ability to
transform high-dimensional noisy data into lower dimensional
information for diagnostic/prognostic decisions. The main
drawback of data-driven approaches is that their efficacy
is highly-dependent on the quantity and quality of system
operational data. The data-driven approach is applicable to
systems, where an understanding of first principles of system
operation is not comprehensive.

B. Model-based Prognostics

The model-based methods assume that an accurate math-
ematical model is available. The model-based methods use
residuals as features, where the residuals are the outcomes of
consistency checks between the sensed measurements of a real
system and the outputs of a mathematical model. The premise
is that the residuals are large in the presence of malfunctions,
and small in the presence of normal disturbances, noise and
modeling errors. Statistical techniques are used to define
thresholds to detect the presence of faults. The three main
ways of generating the residuals are based on parameter esti-



mation, observers (e.g., Kalman filters, reduced order unknown
input observers, Interacting Multiple Models [13]) and parity
relations. The model-based approach is applicable in situations
where accurate mathematical models can be constructed from
first principles.

Adams [14] proposed to model damage accumulation in
a structural dynamic system as first/second order nonlinear
differential equations. Chelidze [15] modeled degradation as
a “slow-time” process, which is coupled with a “fast-time”,
observable subsystem. The model was used to track battery
degradation (voltage) of a vibrating beam system.

The main advantage of model-based approach is the abil-
ity to incorporate physical understanding of the system to
monitoring. Another advantage is that, in many situations, the
changes in feature vector are closely related to model parame-
ters [16]. Therefore, it can also establish a functional mapping
between the drifting parameters and the selected prognostic
features. Moreover, if understanding of the system degradation
improves, the model can be adapted to increase its accuracy
and to address subtle performance problems. Consequently, it
can significantly outperform data-driven approaches.

In the next section, we will focus on model-based prognostic
techniques by combining singular perturbation methods of
control theory, coupled with dynamic state estimation tech-
niques for damage prediction.

IV. MODEL-BASED PROGNOSTIC TECHNIQUES

Fig. 3 shows the block diagram of our model-based prog-
nostic process. This process consists of six steps for predicting
the remaining life of a system.

A. Identify system model (Step 1)

We consider the degradation model of a system of the
following form:

ẋ = f (x,λ (θ) , u) (1)

θ̇ = εg (x,θ)

y = Cx + Du + v

where x ∈ R
n is the set of state variables associated with the

fast dynamic behavior of the system; θ ∈ R
m is the set of slow

dynamic variables related to system damage (degradation);
u ∈ R

l is the input vector; the parameter vector λ ∈ R
q is a

function of θ; the rate constant 0 < ε � 1 defines the time-
scale separation between the fast dynamics and the slow drift
[15]; y ∈ R

p is the output vector and v is the measurement
noise. Since ε is very small, Eq. (1) can be considered as a
system with slowly drifting parameters.

This approach is closely related to a standard singular
perturbation model proposed by Kokotović [17]. The only
difference is that, in the “fast-time” process, λ (θ) is replaced
by just θ. In the limit as ε → 0, we obtain the so-called
associated system [18]:

ẋ = f (x,λ (θ0) , u) (2)

θ̇ = 0
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Fig. 3. Model-based prognostic process

The slow manifold [17] x = x∗(λ), which is the solution to
f = 0 in Eq. (2), consists of equilibrium points. Thus, Eq. (1)
can be viewed as a perturbation of Eq. (2) with slowly drifting
parameters λ.

In general, a first principles model of the hidden (damage)
variable is not easy to obtain; the functional mapping between
the damage variable and the system parameters is typically
obtained from experimental data. For ease of exposition, in this
paper, we consider the system of Eq. (1) with scalar quantities
defined as g ≡ g, λ ≡ λ, ε ≡ ε and θ ≡ θ. This is a valid
assumption if the scalar damage θ is independent of other
damage variables, and is viewed as the most critical one in
the system.

From a stochastic fatigue point of view [19], the damage
variable θ is often related to crack growth and its value is
equal to crack size. A widely used crack growth model is the
Paris-Erdogan [20] law:

dθ/dn = C(∆K)γ (3)

where ∆K = Y (θ)(∆s)
√
πθ is the stress intensity factor.

Y (θ) accounts for the geometry of crack of the specimen, ∆s
is the stress range, C and γ are material constants. Typically
C is a small number (0 < C � 1) and γ is in the range of
2 to 4. We can easily see that Eq. (3) can be written in the
following general form:

dθ/dn = εφ1(θ)φ2(p) (4)

where ε = C, φ1(θ) = (Y (θ)
√
πθ)γ , p = ∆s and φ2(p) =

pγ . The initial damage in above equation is θ(0) = θ0.
The damage development law in Eq. (4) is a special case of

that modeled in Eq. (1) if the parameter p can be represented
as a function of x, that is p = h(x). Thus, g(x, θ) =
φ1(θ)φ2(h(x)) in Eq. (1). Indeed, the damage evolution rules
presented in [14], [15] follow Paris-Erdogan law modeled in



Eq. (4). The system model in Eq. (1) is more general in that
the degradation law need not follow the Paris-Erdogan rule.

The value of damage variable θ can be arbitrary. To facil-
itate analysis, it is convenient to use a damage measure (or
damage rate) ξ which takes values in the unit interval [0, 1]1.
To transfer the slow-time process modeled in Eq. (1) to a
process related to ξ, we will use the empirical Palmgren-Miner
rule, which is used to estimate the life times of components
subjected to a spectrum of loading. The Palmgren-Miner rule
asserts that the damage fraction ∆i at any stress level Si is
the ratio of ni, the number of cycles of operation under this
stress amplitude, to Ni, the total number of cycles that would
produce a failure at that stress level. The total accumulated
damage is then given by

ξ =
K

∑

i=1

∆j =
K

∑

i=1

ni

Ni

(5)

where K is the total number of stress levels. It is assumed
that failure occurs if ξ ≥ 1. Todinov [19] has proved that the
Palmgren-Miner rule is compatible with the damage develop-
ment law, if and only if the damage development rate dξ/dn
at a constant parameter p (stress or strain amplitude) can be
factored as a product of functions φ1(ξ) and φ2(p):

dξ/dn = ηφ1(ξ)φ2(p) (0 < η � 1; ξ ∈ [0, 1]) (6)

where ηφ1(ξ)φ2(p) is a non-negative function and n is
the number of cycles. The load parameter p (usually the
stress/strain amplitude) varies with cycles (time) [19].

To establish the relationship between Eq. (6) and the slow
process in Eq. (1) for scalar damage variable, assume that
Eq. (4) holds for M cycles with different loading amplitudes
{pi}M

i=1. Under the ith amplitude, the damage increases from
θi−1 → θi(i = 1, ...M) until the critical damage (failure) θM

is attained. Then, for the ith cycle, we have

θi = εφ1(θi−1)φ2(pi) + θi−1 (7)

Defining the damage fraction ∆i = dθi/(θM − θ0), we obtain
the total accumulated damage from Eq. (5) as

ξi =

i
∑

j=1

∆j =

i
∑

j=1

dθj

θM − θ0
=

θi

θM − θ0
(8)

We can easily verify that ξM =
M
∑

j=1

∆j = 1. From Eq. (8),

we obtain

dξi =
dθi

θM − θ0
=

ε

θM − θ0
φ1(θi−1)φ2(pi) (9)

=
ε

θM − θ0
φ1((θM − θ0)ξi−1)φ2(pi)

Eq. (9) has exactly the same form as the Palmgren-Miner Eq.
(6) with η = ε/(θM −θ0). This can be interpreted as mapping

1In some applications, monotonic nonlinear transformation of ξ such as lnξ

may reduce the variance of remaining life estimates.

rfc
kk mm =−

+
km

kM

Fig. 4. Definition of the rainflow cycle [23]: From each local maximum Mk,
proceed in the left and right directions with as small a downward excursion
as possible. The minimum of m−

k
and m+

k
is defined as rainflow minimum

m
rfc
k

. The kth rainflow cycle is defined as (mrfc
k

, Mk)

the damage variable θ (θ0 ≤ θ ≤ θM ) to degradation measure
ξ (ξ0 ≤ ξ ≤ 1). Thus, a modified prognostic model in terms
of damage measure is:

ẋ = f (x, λ(ξ), u) (10)

ξi = ηφ1(ξi−1)φ2(pi) + ξi−1

y = Cx + Du + v

The function λ(ξ), which maps the degradation measure to
a system parameter, is often assumed to be a polynomial [21]:

λ(ξ) =

K
∑

i=0

αiξ
i (11)

B. Simulation under random loads (Step 2)

The coupled system model in Eq. (10) is generally nonlin-
ear. Consequently, the evoluation of system dynamics (includ-
ing fast and slow time) is typically obtained through Monte-
Carlo simulations. Since the parameter p is a stochastic process
in many applications [20], simulation of Eq. (10) for ξ requires
the update of damage parameter ξ for every cycle based on
the load parameter p in that cycle. This requires substantially
high computation for simulating the system behavior in the
slow-time scale.

Here we apply the method of averaging [22] for computa-
tional efficiency. In this method, since we are only concerned
with the efficient simulation of damage evolution, the averaged
equations for the fast variable, x, will not be implemented. For
a user specified time T , which corresponds to an intermediate
time scale over which the fast time data is collected (0 <
T � η−1), define xi(xi−1, λ(ξi−1)) as the solution of the
unperturbed Eq. (10) with η = 0, ξ = ξi−1, and initial
conditions xi−1. Let the cycle number ni and load parameter
{pj

i}ni

j=1 be obtained through some cycle counting method
(such as rainflow, mean-crossing, etc. [20]) based on the
stress/strain information during the time interval [0, T ], which
is assumed to be a function of xi. In this paper, we will adopt
the most commonly used cycle counting method, viz., the
rainflow method. The definition of rainflow cycle is shown
in Fig. 4. This method is able to catch both slow and rapid
variations of load by forming cycles that pair high maxima



with low minima, even if they are separated by intermediate
extremes [24]. Defining the function q(ξi−1, {pj

i}ni

j=1) =

φ1(ξi−1)φ2({pj
i}ni

j=1), we obtain the averaged function:

q̄
.
=

1

ni

ni
∑

j=1

q(ξi−1, p
j
i ) =

φ1(ξi−1)

ni

ni
∑

j=1

φ2(p
j
i ) (12)

Consequently, we obtain the updated degradation measure as

ξi − ξi−1 = niq̄ ⇒ ξi = ηφ1(ξi−1)

ni
∑

j=1

φ2(p
j
i ) + ξi−1 (13)

Note that the update of ξ in Eq. (13) is based on time T , while
in Eq. (10) it is based on every cycle. The initial degradation
measure ξ0 is assumed to be a Gaussian random variable
N (µ, σ2), where µ and σ represent the mean and the standard
deviation, respectively.

C. Prognostic modeling (Step 3)

Prognostic modeling is concerned with the dynamics of
degradation measure. Consider a system excited under L
different random load conditions as being in Modes 1 − L.
Assume that M Monte-Carlo simulations are performed for
each random load condition. Then, we can construct L models,
one for each mode. The dynamic evolution of degradation
measure is given by:

ξm(k + 1) = βm(ξm(k)) + vm(k) k = 0, 1, ... (14)

where m is the mode number, βm is a function of previous
state ξm(k) and vm(k) is a zero mean white Gaussian noise
with variance Q̂m(k). The state prediction (function βm) in
IMM for mode m is obtained as follows.

For M Monte-Carlo simulations associated with each mode
(1 ≤ m ≤ L), we form the degradation measure:

ξ = ψi
m(kT ) k = 0, 1, ...; i = 1, 2, ...,M (15)

where i is the Monte-Carlo run number under mode m, and
T is the sampling interval, which is chosen as an intermediate
time scale (0 < T � η−1). Suppose ξ̂m(k|k) is the state
estimate at time k corresponding to mode m, then the residual
time is obtained by taking the inverse of Eq. (15):

tim(k) = (ψi
m)

−1
[ξ̂m(k|k)] (16)

Since ψi
m(kT ) is a discrete-time function, tim(k) in Eq. (16)

needs to be obtained through interpolation. The state prediction
from the ith Monte-Carlo run of mode m is:

ξ̂i
m(k + 1|k) = ψi

m(tim(k) + T ) (17)

Then, the state prediction and its variance for mode m is:

ξ̂m(k + 1|k) =
1

M

M
∑

i=1

ξ̂i
m(k + 1|k) (18)

Q̂m(k) =
1

M − 1

M
∑

i=1

[ξ̂i
m(k + 1|k) − ξ̂m(k + 1|k)]2

Note that the prognostic model discussed above can be
computed off-line based on the simulation (or historical) data.
Thus, the state prediction equation will be:

ξ̂m(k + 1|k) = βm(ξ̂m(k|k)) k = 0, 1, ... (19)

where βm is a numerically calculated nonlinear function as in
Eq. (16-18).

D. Feature parameter estimation (Step 4)

Since the hidden variable ξ is unobserved, we need to
estimate it from the input/output data {y, u}. One way to
estimate ξ is to use the update equation for ξ in Eq. (10),
where φ2(pi) is a function of measurement y. Since we do
not know the initial value of ξ0, this method will produce
biased estimates.

Another method is based on estimation of the drifting
parameter λ of the fast time process in Eq. (10). Two parameter
estimation techniques, equation error method and output error
method, can be employed to estimate λ from a time history
of measurements {u(t), y(t)}T

t=0
[2]. During the time interval

[t, t + αT ], we assume that the parameter λ is a constant
(typically α ' 1/10). Generally, equation error method is
computationally more efficient than the output error method.
However, it is less accurate than the output error method.
The accuracy of equation error method can be improved by
increasing the number of data points for parameter estimation.
Details of parameter estimation can be found in [2], [25]. Here,
we employ the equation error method to estimate λ.

In the equation-error method, the governing equation for
estimating λ is the residual equation. The residual equation
r(y, u, λ) is the rearranged form of the input-output or state-
space model of the system. Suppose N data points of the
fast-time process are acquired in an intermediate time interval
[t, t+αT ]. Then, the optimal parameter estimate is given by:

λ∗ = argmin
λ∗

N
∑

i=1

‖r(yi, ui, λ)‖2 (20)

Based on the internal structure of the residual equation,
two optimization algorithms, linear least squares and nonlinear
least squares, can be implemented. If prior knowledge on
the range of λ is available, the problem can be solved via
constrained optimization. In any case, we can construct the
measurement equation as:

z(k) = λ(ξ(k)) + κ(k) k = 0, 1, 2, ... (21)

where z(k) = λ∗, λ(ξ) is typically a polynomial function
as in Eq. (11) andκ(k) is a zero mean Gaussian noise with
variance Ŝ(k). The variance is obtained as a by-product of the
parameter estimation method.

E. Track the degradation measure (Step 5)

To track the degradation measure, an interacting multiple
model (IMM) estimator [13], [26] is implemented for online
estimation of the damage variable. For a system with L
operational modes, there will be L models in IMM, one for



each mode. Each model will have its own dynamic equation
as in Eq. (14) and the measurement equation as in Eq. (21).
Details of IMM filter can be found in [13].

F. Predict the remaining life (Step 6)

The remaining life depends on the current damage state
ξ(k), as well as the future usage of the system. If the future
operation of a system is known a priori, the remaining life can
be estimated using the knowledge of future usage. Typically,
one considers three type of prior knowledge.

1) Deterministic operational sequence: In this case, we
assume that the system will be operated according to a known
sequence of mode changes and mode durations. Define a
sequence S = {mi, Tsi, Tei}Q

i=1, where Tsi and Tei represent
the start time and the end time under mode mi, such that
Ts1 = 0, Tei = Tsi+1, and TsQ is the time at which
ξ = 1. Suppose M Monte-Carlo simulations are performed
for this operational sequence. Then we obtain M remaining
life estimates based on ξ̂(k|k), the damage estimate at time
instant k. The mean remaining life estimate and its variance
are obtained from these M estimates via relations similar to
Eq. (18).

2) Probabilistic operational sequences: In this case, we
assume that the system is operated under J operational se-
quences Sj = {mj

i , T
j
si, T

j
ei}J

j=1, where Sj is assumed to
occur with a known probability ζj . If r̂j(k) is the estimate
of residual life based on sequence Sj , then the remaining life
estimate r̂(k), and its variance P (k), are given by:

r̂(k) =

L
∑

j=1

ζj(k)r̂j(k)

P (k) =
L

∑

j=1

ζj(k){Pj(k) + [r̂j(k) − r̂(k)]2} (22)

3) On-line sequence estimation: This method estimates the
operational sequence based on measured data via IMM mode
probabilities. Here, we assume that future operation of this
system will follow the observed history and the dynamics of
mode changes. Suppose we obtain the residual time tim(k)
according to Eq. (16) for the ith Monte-Carlo run in mode m.
Then, we can calculate the time to failure for ξ = 1 as:

tim(end) = (ψi
m)

−1
[1] (23)

The remaining life estimate from ith Monte-Carlo run for
mode m is:

r̂i
m(k) = tim(end) − tim(k) (24)

Then, the remaining life estimate and its variance for mode m
is:

r̂m(k) =
1

M

M
∑

i=1

r̂i
m(k) (25)

Pm(k) =
1

M − 1

M
∑

i=1

[r̂m(k) − r̂i
m(k)]

2

The above calculation can be performed off-line based on
simulated (or historical) data. To reflect the operational history,
we use the mode probabilities from IMM to estimate the
remaining life as follows.

Let µj(k), µ̄j(k) denotes the mode probability and aver-
aged mode probability for mode j = 1, 2, ..., L under damage
measure ξ̂(k|k). The averaged mode probability is initialized
as µ̄j(0) = 1/L. The recursive updates for the averaged mode
probability, the remaining life estimate and its variance for
k ≥ 1 are:

µ̄j(k) =
1

k
[(k − 1)µ̄j(k − 1) + µj(k)] for j = 1, 2, ..., L;

r̂(k) =

L
∑

j=1

µ̄j(k)r̂j(k)

P (k) =
L

∑

j=1

µ̄j(k){Pj(k) + [r̂j(k) − r̂(k)]2} (26)

Note that the remaining life prediction r̂(k) and P (k) will
decrease as degradation measure ξ increases. This implies that
as the damage measure ξ approaches 1, we can obtain more
accurate estimates of the remaining life (i.e., less uncertainty).

V. DEMONSTRATION OF THE PROGNOSTIC PROCESS

To demonstrate the prognostic algorithms, a simulation
study is conducted on an automotive suspension system. A
half-car two degree of freedom model [27] is adopted. The
active suspension part is not used in our simulation. Fig. 5
shows the suspension model, which is subject to irregular
excitation from a road surface. This demonstration will follow
the prognostic process discussed in the previous section.

The equations of the model are given by

mẍ+ (fca + fka) + (fcb + fkb) = 0 (27)

Iθ̈ + la(fca + fka) − lb(fcb + fkb) = 0

m2aẍ2a − (fca + fka) + k2a(x2a − wa) = 0

m2bẍ2b − (fcb + fkb) + k2b(x2b − wb) = 0

x = (lbx1a + lax1b)/l, θ = (x1a − x1b)/l

l = la + lb

fci = ci(ẋ1i − ẋ2i), i = a, b

fki = k1i(x1i − x2i), i = a, b

where

m : vehicle mass I : moment of inertia
m2a : mass of front wheel m2b : mass of rear wheel
θ : rotary angle of vehicle x : vertical displacement
fca, fcb : damping force of the front/rear wheel
fka, fkb : restoring force of the front/rear wheel
k1a, k1b : spring constants of the front/rear suspension
k2a, k2b : spring constants of the front/rear suspension
x2a, x2b : vertical displacement of the front/rear wheel
x1a, x1b : displacement of the vehicle body at front/rear
la, lb : distance of the front/rear suspension to center
wa, wb : irregular excitations from the road surface
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Fig. 5. Half-car suspension model

A. Identify system model

The model parameters are obtained from [27], [28]:

m2a = 30 (kg) I = 2100 (kgm2)
m2b = 25 (kg) m = 1200 (kg)
k2a = k2b = 152 (kN/m)
la = 0.9 (m) lb = 1.2 (m)
cb = 4000 (N/m/s) ca = 5000 (N/m/s)
k1a = 56000 (N/m) k1b = 42000 (N/m)

The standard vector matrix form of Eq. (27) is:

Mz̈ + Nż + Kz = Eu (28)

where the state, input (excitation vectors) are given by

z = (x1a x2a x1b x2b)
T u = (wa wb)

T

It is assumed that the vertical accelerations ẍ1a, ẍ1b, ẍ2a, ẍ2b

are the measured variables. The M,N,K and E matrices are
given by:

M =









lbm/l 0 lam/l 0
I/l 0 − I/l 0
0 m2a 0 0
0 0 0 m2b









N =









ca − ca cb − cb
laca − laca − lbcb lbcb
−ca ca 0 0
0 0 − cb cb









K =









k1a − k1a k1b − k1b

lak1a − lak1a − lbk1b lbk1b

−k1a k1a + k2a 0 0
0 0 − k1b k1b + k2b









E =









0 0
0 0
k2a 0
0 k2b
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Fig. 6. Function φ1(ξ), k1a(ξ) versus the degradation measure ξ

The second order linear dynamic model (27) can be repre-
sented in state space by introducing the state vector

x =

[

z(t)
ż(t)

]

, ẋ =

[

ż(t)
z̈(t)

]

Eq. (27) is transformed to the equivalent state space form:

ẋ = Ax + Bu (29)

y = Cx + Du + v

where

A =

[

0 In

−M−1K − M−1N

]

B =

[

0
M−1E

]

C = M−1 [−K − N] , D = E

The input u, which is the irregular excitation from the road
surface, is generated as follows [29]. The road roughness is
typically specified as a random process of a given displacement
power spectral density (p.s.d.). An often used approximation
of road displacement p.s.d. for various roads is given by

S(ω) = Aωq (30)

where A and q are appropriate constants. The most commonly
used case corresponds to q = −2. With this value, the
displacement spectra in Eq. (30) implies that the displacement
is a Wiener-process. Here, we modify Eq. (30) to make
displacement a stationary process. The modified p.s.d. for dis-
placement is S(ω) = A/(c2 +ω2), where c is a small number
(here we choose c = 0.01 rad/s). Thus, the displacement
input u = (wa wb)

T is generated by

ẇi + cwi = ρi, i = a, b (31)

where ρi is a zero-mean Gaussian random process with the
correlation functions:

E[ρi(t)ρj(τ)] =Aδ(t− τ) for i = j (32)

=Aδ(|t− τ | − tl) for i 6= j

where A is the variance of white noise, and tl = (la + lb)/v
is the time delay between the front and rear wheels [27]. We
assume that the speed is a constant with a value of 20(m/s).
According to [29], three road terrains are selected: very good,
fair, severe. These terrains are characterized by parameter A.



0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Operational time (×105s)

D
eg

ra
da

tio
n 

m
ea

su
re

 ξ

Severe road
Condition 
(mode 3)

Fair road
Condition 
(mode 2)

Very good 
road condition  

(mode 1)

Fig. 7. 100 Monte-Carlo simulations for three random loads

The parameterA for these three roads are 10−6m2,4×10−6m2

and 9 × 10−6m2, respectively. The measurement noise co-
variance for accelerometer measurements v = (v1 v2 v3 v4)

T

are assumed to be identical with N (0, 10−4I). The simulation
sampling rate is 2kHz.

Eq. (29) consists of fast-time dynamic equation and mea-
surement equation. To construct a complete model in Eq.
(10), we need a slow-time model for the degradation measure
ξ. In this model, we assume that the stiffness k1a of front
suspension is the coupled parameter that is a function of ξ. The
related stiffness degradation function k1a(ξ) is approximated
by the following polynomial

k1a = λ(ξ) = 5.6 × 104 − 8.84× 103ξ + 4.34× 104ξ2 (33)

− 1.66× 105ξ3 + 2.53× 105ξ4 − 1.38× 105ξ5

Let us consider the front suspension system with an edge
crack that is orthogonal to external loading. In Eq. (3), we
assume that γ = 2. Then, φ1(θ) has the following form [30]:

φ1(θ) = (πθ) × [1.122− 1.4(θ/b) + 7.33(θ/b)2 (34)

− 13.08(θ/b)3 + 14(θ/b)4]2

where θ is the crack length and b is the width of the mechanical
component of front suspension system. We assume that the
maximum θM is b/8. Defining degradation measure as ξ =
θ/θM = 8θ/b, we obtain the function φ1(ξ) needed in Eq.
(10) by substituting θ = bξ/8 in Eq. (34).

Fig. 6 shows these two functions versus the degradation
measure ξ. For γ = 2, the function φ2(p) is equal to p2. The
parameter η in Eq. (10) is η = 8×10−6. The intermediate time
scale T is equal to 100s. The initial damage ξ0 is assumed to
be N (10−3, 10−4).

B. Simulation results

The system model in Eq. (10) was simulated with a standard
4th-order variable-step-size Runge-Kutta algorithm. Fig. 7
shows the results of 100 Monte-Carlo simulations for the
system under three different road conditions. Compared to the
severe road condition, the increases in the life times for the fair
and very good roads are about 35% and 80%, respectively. If
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measure

we assume a 10% calendar time usage of the automobile (2.4
hours a day), the expected life of suspension system will be
4.5, 6 and 8 years, respectively, for the three road conditions
(severe, fair and very good).

C. Prognostic modeling from simulation data

Since the suspension system has three random road condi-
tions, the number of modes in the degradation model of Eq.
(14) is 3. The model parameters for each mode are estimated
as discussed in the previous section.

D. Feature estimation

In this paper, we use the equation error method to estimate
k1a. The residual equation is obtained by substituting the last
equation for fka in the first equation in Eq. (27), and changing
state x to measurement y:

r(y, k1a) = (mlby1 +mlay2)/l+ ca(

∫

y1 −
∫

y2) (35)

+ cb(

∫

y3 −
∫

y4) + k1b(

∫∫

y3 −
∫∫

y4)

+ k1a(

∫∫

y1 −
∫∫

y2)
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where y1 through y4 are the measurements. Since the above
equation can be written as a standard linear regression model,
the value of k1a can be identified through linear least-squares
estimation by minimizing

∑N
i=1

‖r(yi, k1a)‖2, where N =
0.1T · 2000 = 20, 000 and T = 100s. The estimated variance
Ŝ(k) for parameter k1a can also be calculated. The Ŝ(k) of
the parameter estimation is almost the same for a range of
k1a values we simulated for each mode. We use Ŝ(k) =
2.6 × 104 N2/m2.

E. Track the degradation measure

For IMM implementation, we use the following transition
matrix:

Φ =





0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9





where Φij = P (mode j in effect at time k + 1 | mode i in
effect at time k). The system mode changes are simulated as
follows. Mode 1:[0, 70×105s], Mode 2:[70, 140×105s], Mode
3:[140× 105s, tend], where tend is the time at which ξ = 1.

Fig. 10 shows the plot of mode probabilities of the IMM.
The mode probabilities for the three modes are initialized to
(µ̄j(0) = 1/3, j = 1, 2, 3) and then Mode 1 reaches the
highest mode probability (approximately 0.85) in the range
[0, 70 × 105s]. Mode 2 reaches the highest mode probability
(approximately 0.9) in the range [70 − 140 × 105s]. Finally
Mode 3 dominates the remainder of simulation with the
highest probability around 0.99. Thus, the IMM (which may
be viewed as a software sensor) tracks the road condition very
well based on noisy data.

F. Predict remaining life

The mean remaining life estimate r̂j(k) and its variance
Pj(k) under the three modes are calculated off-line according
to Eq. (23-25). Fig. 8 presents the mean and variance of
remaining life estimate for the three modes. The nonlinear
relationship between the degradation measure ξ and the mean
remaining life estimates is clearly evident. These values and
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mode probabilities from IMM are used in Eq. (26) to recur-
sively obtain the remaining life estimate of the suspension
system. Fig. 9 presents the estimate of remaining life (solid
bold line) and its variance using IMM mode probabilities
in Eq. (18) for a single run of the scenario considered in
subsection E. We can see that, initially, the remaining life
estimate follows Mode 1 and after switching to Mode 2, the
remaining life estimate is in between those of Modes 1 and 2,
which is what one would expect. Finally, the remaining life
estimate approaches that corresponding to Mode 2. The dashed
bold line represents the remaining life estimates assuming that
the road surface condition can be measured accurately via a
sensor (such as an infrared sensor). In this case, the mode
is known. We can evaluate the contribution of the additional
sensor to the accuracy of the remaining life estimate. In Fig.
(9), we can see the IMM produces remaining life estimates
that are close to the estimates that one would get with the
additional displacement sensor. The difference between these
two estimates is relatively high (about 6%) at the beginning
(ξ < 0.1) and they are virtually identical as degradation
measure ξ increases.

Fig. 11 shows the root mean square error (RMSE) of the
estimates of remaining life. At the beginning (ξ < 0.02),
RMS errors are high due to the transient effects of the IMM
filter. After that, the RMS error rapidly becomes small as
degradation measure increases. The RMS is in the order of 102

to 101 hours of usage (40 to 4 days of calendar time), which
is very accurate compared to the total life of the suspension
system.

VI. CONCLUSION

Unlike conventional maintenance strategies, prognostic
techniques predict system degradation based on observed sys-
tem condition to support “just-in-time” maintenance. The ever
increasing usage of model-based design technology facilitates
the integration of model-based diagnosis and prognosis of
systems, leading to condition-based maintenance.
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In this paper, a systematic model-based prognostic process
was presented to predict the remaining life of a system
with multiple operational modes. We uses singular perturba-
tion methods of control theory, coupled with dynamic state
estimation techniques. An IMM filter was implemented to
estimate the degradation measure. The time-averaged mode
probabilities are used to predict the remaining life. This
process was demonstrated on an automotive suspension system
with a drifting parameter.

There are several future extensions of this research work.
These include the refinement of the prognostic process, appli-
cation of the process to real-world systems, and incorporation
of stochastic models of degradation.
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